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o) TWO-DIMENSIONAi'FLOWS OF COMPRESSIBLE FLUIDS

" By'Stéfan Bergman
SUMMARY

"This fbport is devoted to the study of two-dimensional
steady motion of a compressible fluid.

It is shown that the.complete flow pattern around a
closed cbstacle cannot be obtained by the method of Chaplygin.
In order to overcome this difficulty, a formula for the
stream~function of a two-dimensional subsonic flow is derived,
The formula involves an arbltrary function of & complex vari-
able and yields all possible subsonic flow patterns of certain

types. It is a generalization of the eXpression Im[g(ejj —>
for the stream function of an incompressible fluid, (Here V
is the velocity vector and g an arbitrary analytic function

Conditions are given so that the flow pattern in the
physical plane will represent a flow around a closed curvs,

The formula obtained can be employed for the approximate
determination of a subsonic flow around an obstacle. The
method can be extended to partlally supersoniec flows.

INTRODUCTION

The theory of irrotétional two-dimen'sional flows of an
incompressible fluid is based on the theory of analytie func-
tions of a complex variable.

The relation between these two theories is given by the
fact that the stream function W(x,y) of flow satisfies the

Laplace equation :(3%y/3x®) + (3®y/3y®) = 0. Hence the imag-
inary part of an analytic function f(x + iy) is & stream
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2 NACA TN No. 972

function of a possidble flow, and all flow patterns can be ob-
tained in this way.

For certaln purposes, however, it 1s useful to modify
thie approach. The stream function may be considered as a

function of the components v, and v, of the velocity vec~

tor -ﬁi 2_A,gain y satisfies the Laplace eqguation
(32¢/3V1 )'+'(38W/avaa) = 0, Therefore, it is posslidle to
choose as vl,va) the imsginary part of an analytic func-

tion g(v), v being a complex variadle in the (v,,vy)~-

plane. In this way the flow pattern in the (v,,vz)-plane

(hodograph plane) is ohtained. In order to find the real
shape of the streamlines i1t is necessgary to derive from

In g{v) the corresponding function.of x and y. This
transition does not involve any serious theoretical diffi-
culties,

In the case of a potential flow of a compressidle fluid
the first method (construction of the flow pattern directly
in.the. phjysical plane) leads to a rather complicated nonlin-
ear partial differential equation. The second approach (con-
struction of the flow pattern in the hodograph plane) reduces to
the intsgration of a linear partial differential equation.

"(See Chaplygin, reference 1.) Hence, the use of the hodo-
graph method permits the application of various results from
the, theory of linear partial differential equatlions.” For
'inst'ance, & stream function in the hodograph plane can be ob-
" tained as a linear combination of particular solutions of the
linear equation mentioned. Chaplygin was the first to con-
struct a set of such particular soluticondg., Two other methods
of constructing such sets have-been give#i by the present -,
anthor. (See reference' 2, pp. 16-20 and 23-24, and reference
3, sec. 2.)

However, Chaplygin's method and both methods given in
refergnces 2 and 3 are not satisfactory in one respect. In
general, the gtream functlion will be reprdesnted by an infi-
nite series of particular solutions, and such a series will
converge only within a part of the domain in whick ths flow
is definea?l,

1A hodograph of a flow around e profile is (in general)
a multiply covered domain (see fig. 1b and 2b) the branch
points of which are not necedsarily locdted either at the
oriBin or at infinity; on the other (continued on next page)

~
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To obtaln results pertaining to the actual flow, a rep-
resentation of the stream function as a whole is indispensi-
ble. A representation fulfilling these requirements is given
in this paper, (See also reference 2, sec. ‘6, and reference
3, sec., 4.)

If a linear relation between the pressure p -and. the
specifiec volume 1/p 1is assumed:

p =4 +0/p (1)

(A,0 constants), then the hodograph ecuaﬁian coincides with
the Laplace equation Agsuming relation (I) and ,neing the
theory of functions of a complex variable, Von Kérman (refer—
ence 4) and Tsien (reference 5) obtained the compressible
flow past an elliptic cylinder. Equation (1) is a very Pough
approximation to the actual pressure-density relation and can
be used only in cases where the local velocity is far below
that of sound.

In the present report a general pressure-density relation

ies used (A, o, k¥ are constants). (Equation (z contains as
a special case the adiabvatic relation p = Up . Assuming
(2) gives a general formula for the stream function. Tmig

{ormula expresses the stream function of a compressible flow

in terms of an arbitrarv analytlc function of a complex vari-
able,

The representation obtained is, in general, valid in the

whole region where the flow is subsonic and in some cases can
be extended into a supersonic reglon salso.

This investigation, conducted at the Brown University
was sponsored by,. and conducted with the financial assistance
of the National Advisory Committee for Aeronautics.

(continued from page 2) hand, the Chaplygin solutions
yield flows which (in the hodograph plane) either are single-
valued, or multi-valued with a branch point at the origin or
at infinity. In order to represent such flow patterns, sev-
eral serieg development, each of which represents the stream
function Y under consideration in a certain part of the
domain 1n which WV 1is defined, 1s needed.

<
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"I take the opportunity to express my gratitude to Mr.
Leonard Greenstone for his assistance in the preparation of
the pressnt paper.

NOTATION.

LR T

Remark: In dealing with differential eguations, the following
complex notatlon is often used:

L _a_‘l..ia“)

Uy = ou . uy su - E;(ﬁﬂ:+ g Su
3 ax oy 2\o

oz

o1 .1/ 3% a3u> - - .
Vs = = Au = = &= + S g = x + 1y 7z = X - iy
a = [ai - %(k - 1)v3J% gspeed of sound; (equation (28))
ag speed of sound at a stagnatlion point
- Y L) T
c ' (see fg94).) _ :
c(n) (see (94).)
exp(x) = eX; e base of Naperian logarithms

f{z) an arbitrary analytic function Bf- the complex vari-
able 3 :

£y = af/als £y = 3f/as

g constant of gravity
,g(g) ‘gn analytic function of the complex variable . §; the
" ‘'result of applying the ‘transformation’ z = z(¢) to

ﬁf:’- f( ) s mT e

gl (D = el T . __
() (see (132), 22, Tt o
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S fdr-mkfg;ly-oddaéioﬁ;Il#lﬁhé boundary curve oF
: k+1 a. domain. H .-

k ratio of specific heat &t ‘constant pressure to conmnstant

volume B
3 (H) =<§A>a = (J_’_?- ® (1 - ¥2(E)); (45). .
oF p(H) I . Co
P pressure
Po pressure "at rest®
r polar cgoordinate in the physical plané
e =1 ~/1 - M2, (151) __
schl;chp'é univalent __7“I x
.V épeé&; magnitude of —?? al;a,'occasionally, the reduced

speed v/ag

-
v,,Vy; Cartesian componente of ¥

¢ + 1

w

x,y OCartesian coordinates in the ph&éical plané

A wnne

z = x + iy

z = x-"i.y
A constant.in the bressure-depéity relation (22) (Ses
also sec, 3.,) . e Loy

L)

3(x,y) ©9xdy 2dyox ST P

- o . “ . L ke .',.u

E  (See theorem (53).) By = 2Z, By = o . . w i
T+t OH 3" B

B+ = exp JGd ('Z‘*g'i'\)'"ﬁé"" 6o) | Lia

~=Co
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T oo (N, + NP o Lk DM i)M4..4(3 - 2KIMZ + 16{;(71)
¢ 64(1 -~ M2)°

Fm(zk) = Ej eakk; (Lemma (67%))
k=1
Fx (See theorem (83).)

F, (See (115), ff.)

G(E) (See (B3); also (124).)

¢, (B) (see (68).)

Go(E) (See (75).)

E+¢
H = expl- [ wa(E+¢) '(111)1; ocdcasionally a domaln in the
. hodograph plane with boundary curve h
o]
H (See (115), ff.)
I heat content

./_Eﬁpk'l \
\g(k - i))

Im the imaginary part of

I/g pressure head

K kernel function (See reference 2; rleo sec, 3.)
v .
Ky keérnel functilonw of H;” K§ ='/p3KH(V,A)dV

L(V) = W;z + By (70) °
Lo(¥) 'Wéf + N(zx)[wg + wz}f (46)

L,(¥) = Wﬁf + Fp; (74), ff.

Vo

L, . (See (115),)

1
See remark 1.
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M.=v/a = T/[ai -.%(k - l)vé]%; local Mach number; (31)
(x + 1) u* ,

¥ = - .

s - Ma);_.,/a ¢ {47)
N, (see (115).)

A
() - -%j/3F ary (107)1
< ) _ é - -3; ( . . ' ‘...; . "-.-.- .- [,

of?) = 27 + 2(2(2))2; (108)? |
QQS)?(see (110) )
Q(n> (Sege. (8&) ) . worotel i oo
éfn) ﬁSee (94) )
glo) _ H._A (114), £f. o e

B -

y _ 3H ) : '
r(1 =+ 2 Hq<1) £ (214), £5£.

s .

R(2) (see (114), ﬁf:Y g‘* e e
Re the real part of

Schlicht = univalent
U s & (Po)z" c1 Z iR )wee + wHH, (43)

.2
L

e

CA (f_) (1 = ¥)vgg + B2 2 STy [@5}’ ﬂTﬂé_}’:’  (82)

1%

T = l = Ma = 3 i 3 (5‘_L) 5y ' L LN
e+ Lk - 1)v? B
2
: - - PR vr .
P Fe N st 0T .

T - — e
Ses remark 1. =
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T o gelf
= Ve = v, + iv, veloelty wvector

az
Veo magnitude of the velocity at infinity

W,w¥ (See (119).)

{: ( — ﬁ 1l + s> ( -, 1)}H (162).. o i. ;

o the angle which a doublet makéd with the real axis, (14)
(Also, a real translation of the axis (See (115) ante.)

€, aeB "a 1is a member of B" or "a Tbelongs to B"
£ = A £ 16 in which case { = A ¥ ib (This variable use of

{ merely means a reflection with respect to
the real axis,)

e
8 the angle which V makes with the rga; axis
A(M) = A(v); (48), (49)

1
p density; p = p_ [1 ~'£§L:312 va] k-1, (25)
2ay

Py the density "at rest!

[
v o

o a constant in pressure-density relation P = A+ ka' (22)
¢ potential function also, the polar angle in the rhysical
plane (polar coordinates)
Vo stream functiop%
. TR TR
. §+§ JARRY
1 .
Y* = exp NaE+$) |y (69) T :
. : - o
—co Co -t %=1
r circulation; in part II the Gamma fuhction r'(x) = e “t* db;
(800 ssc. 11, f£f). J

1See remaric L. i
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A Lapiace operatof: —JE —JE ( )
ax dzdz

ACE) (Sse (45).)
Ag-= 3AJ3E, Ag = 3A/38

® Potential Function- (Seée remark 1.)

¥  Stream Function (See remark 1.)

Remark 1: 1In the following, the potential and the strean

- functions ¢(x,y) and Y(x,y) (as well as several other
variables whigh are indicated in this section) are considered
as functions of different ‘pairs of variazbles. In passing
from the physical to some other plane, new symbols should be
introduced for ¢ and& Y, since in different planes ¢ and
V¥ are different functions of their respective arguments.

For ‘instance, faseing to the (v,B8)~-plane yields

W ) sy [xre), v ]

For %the - sake iof bfevity:t&é éﬁﬁhor omits the superscript and
always writes ¢ &and ¥, no matter in which plane hs con-
..8iders these functione.

.+ . - . POREWORD

The stream function Y of an incompressible fluid flow
i =8 solutldn of the Laplace equation

4 . .3
g . . . N

2 . . e

ax _ay
?heréﬂezisﬁg'a general formu%é “: .

ver[ew]e e S @
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in terms of an arbitrary function f of one variable, for
solutions of this equation. Here v is the speed and O
the angle which the velocity vector forms with the positive

x-axis,

In the case of a flow of a compressible fluid, the
stream function is & solution of the system of equations

Sy f - ) @] B - ) ()]

.2 (B.Q)k“a_mﬁ--aaw o (5)
(poéo)a 3x 3y 3% 3y

C) [ gt ) (@) @) ]

where Pos 803 and k are constant. TFor alr, k = 1.4.

A generalization of formula (4) to the case of subsonic
flows of a tompressible fluid is given in this paper. Let

2 1 3 %
M=vfla,” - E(k - )v be the local Mach number. If it

1s assumed that the l w is subsonic and that k = 1.4, func-
tions A(M), H(M), Q'2/(M), n = 1,2, . . . are determined
(see table Ib) so that for the solutions of (B) there is ob~-
tained a reprosentation®

‘Stream function V¥ and density p have to be consid-
ered as unknown in system (5). The elimination of p, in
order to obtain one equation for V¥, 1is impossible.

ZFor many purposes in evaluating (6), 1t suffices to
take only a few terme of -the series, There also exist methods
for improving the convergence of (6). As will be shown else-
where, it is possible under rather general assgpptions to

interchangs the lim “and ths summation ST and thus

m ~—> o™ -
obtain a new formula for VY. In many instances, however, the
formula in the original form 1s more sultadble for applica-
tione, sgince by a suitable choice of the m's it is possidble
to achieve faster convergence.
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m—->°°

LT ey = i {H(M) [f(g)

By ar t, .
+ Sﬂ Qm(n)(M) (52)’ NI : lf(tn)dgn' ¢ dgl

— 2 n! J

n=1 o o
_ }\(M) - 16, ;\(M) 1 log 1 - (1 - Mz)% 1l + h(l - Ma_)% llh

2 1+ (1 - Ma)% 1 - h(l - MB)%
v h‘. - k -1 ) 'l.c->.-.:.'l:: iyl
k + 1

in terms of an arbitrary function of one variable. ‘Stfnce £
the trangition to the variables x, ¥y does not involve any

essential difficulty, (4) and (6) yield patterns for possible

incompressible and subsonic (compressible) fluid flows.

Formula (6) is of interest not merely as a tool for com-
puting 'examples of flowe of.a ‘compressible fluid, dbut- it may
be considered also as an ‘operation which transforms streanm -
functions of incompressible flows into stream functions-roef
compressible flows. Thé -formula suggests the possibilisy . of
carrying over various physieal laws which govern the motion
of 'an incompreesible. fluid to the case of a compressible
fluiad. .

. .In a companion paper this formula will be used for &con-
structing a subdbsonic flow around a curve which approximateées
the boundary of an obstacle given in the xy-plane. (see
NACA TN No. 973.) °

Another application of the above result is to "distor-
tion theory" < that is, the study of how the properties and

“The possibility for generalization of the formula for
the case of-a mixsd (1.e., partially subsonic and partially

supersonic) flow is discussed in.the paper. It is observed
that for "M< 1, ! 1is a complex- number,,for M>1 a
purely iméaginary number. Therefore,- for Mo< 1, - £(8) is

a function of one complex:variabdle, while for. M>1 it'is
a function of a real variadle. o S
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the shape of the. boundary change (in applying ,the preceding
pracedure, retain in both formulas {4) and (6), the same
function f) upon passing from & flow of an incompressible
fluid to the corresponding subsonic flow of a compressible
filgid: or upon changing the density-pressure relatlion ¢f the.
fluid.

I. THE HODOGRAPH METHOD IN THE CASE OF AN INCOVPRESSIBLE FLUID
nl A Geweral Reprcsentation for the Stream Functlon of

Flows of an Incompresgible Fluid in Terms of an

Analytlie Functionl of a Complex Varlable

A stream function of a flow of an incompressible perfesct
Ffluid 1s a :harmonic function - that is, a function which sat-
isfies the Laplace equation . .

2 ' ) . .
S %*-M_:o o gy
ox oy~

Oonversely, a function y wkich satiefies equation (7) can
be . interpreted as the stream funotion of a suitable flow.
Since the imaginary part of an analytic function of a complex
variable satigfies (7), and for every function satisfving (7)
there exists a function f(z) such that

Wix,y) = Im[f(z)] (8)

(8) is the "genaral formula for the stream functions of a
flow of an incompressible fluid. Here £f(z) - ranges over
the totality of analytic functions. '

In connection with various problems in fluid dynamics as,
fo;'examble, Jet probleme, another msethod of attack was

. "*In many instances an analytic function of a complex
variable congists of geveral (or infinitely many) branches,
each of which i¢ defined in the whole xy-plane. These
branches cover the plane many times,. Since a flow covers the
plane or = part of it only once, each brangh gives rise to a
physically poséiblé stream function. . However, here and in
the following; a-fuanction is always spoken of rather than- a
rarticular branch of 1%, Lo
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developed the basic idea of’ which 48 4o consider the flow not
~in ‘the physical plane dut”in the hoﬁograph or so-called loga-
rithmic plane - that 48, to inhtrovduce as independent #aria-

able’s' the components vl,’va “ef'hHe velocity vector

.

?f_.veie;f =Wy v vy = E-EI_:,.: W =¢ .+.-. --:k\lli
and’ iog' v a'& Jpe, :reebectifeif;ainéteéﬁ'e%'.x and . y.

This approach. leads to another .gensral formula which,
while 1%t is more complicated than (8), has the advantaze of
being capable of generallzation to the case of a compressible
fluid. .

In the case of an incompressible fluid the stream func-
tion :

¥irie) = u[xtios vie), w(ros we)] (9)

is again a harmonic function of log v and 6 and there-
fore . : ' *

viv,8) = Im[f'(log v - 19)‘] (10)

yields a “general formulal for'the stream function (consid-

ered as a function of log’'v and 6&). The representation,

V(log v,8) = constant, for the streamlines (in the logarith-

mic plane) of the flow is obtained immediately from (10),
R S N - e . : C

2.‘?aseage from the Logarithmip_P;ane*tonthe.Physical_Plane

The fact that the flow is gons1dered in the logarithmlc
plane instead of the original physical plang introduces

By the transformation Z* = log Z +the suthor passes
from the hodograph to the logarithmic plane. 1In.thg follow-
ing, in many 1nstances, it .1s necessary to pass . from the
hodograph to the logarithmic plane and vice versa, often’
without expli¢itly mentiohing it. | Thie fact is stressed here
in order %o avoid coﬁfusidn ~Thg plane the .Cartesian coordi-
nates of which are icg v and 6 is denoted as the 1ogarith-
‘mi¢ plane. .

Ses Notation, rémark 1.
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dertain complicatlons. In order to overcome them it 1is
necéssary to investigate more thoroughly the-relatiens vhich
ex1ét between the Fflow around a given obstacle in tlhe plys-
ical plane and its image in:the hodograph and logarithmic
planes.

Suppose  that the stream functlon = y(log v,B8) of a
flow (of an incompressible fluid) in the logaritkmic plane 1s
given. The following procedurs ylelds the streamlines of the
corresponding flow in the physical plane. Since

= Aw . )
vV = E; (see reference 6, p. 32), it follows inversely that
' | ow
2 = = (11)
v

Writing 5 = ve~1® ang noticing that the integration occurs
along a streamline, VY = constant, and therefore 4y =
gives (11) written in the form

ig o i6
[ [

i
e a8 ~r 2y -
f Z[ou + 6, 29a (12)

'Using the relations v, = _Wa and ¢e = v{y, and notiéing
‘that along a streamline wv dv + Wg 48 = 0 and there-
fore, dB/av = -y /Vg. gives :

BRRY :
X+ iy = z = "fia--,[‘-’-’e + yzwf’,/}yel ‘1‘_’,

By separating the real and the 1maginary parts tnere is. ob—
tained a.parametric representation. .

il

‘I’

X = z(v) - _/ COS@ LW@B +'V?sz] av
. SRERES Wb‘ :
° 4 (13)
y = y(v) = / sin 6 [-‘-'"82 3V ] dy
ve \JJB
"o
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for the streamlines in-the physical plane. - One of the
streamlines or a suitable part of it can be used.as the
boundary of the obstacle.

Bv emplOying the hodograph- method in airfoil theory it
is convenient toluse the fact thdt the approximate form of
the hodographs of the flows around alrfolls of certain shapes
is known. If it is assumed that the domain H which repre-
sent's the image of the. flow in the logarithmic plane is given
(see, o.g., fig. 2b), it is possidle. t.o construct at first.
the harmonib function : (1og v,0) which d&sumes a constant -
velue on the boundary h of the hodograph 'and has thHe pre-. -
scribed ‘Bshavior at-the point which correspogds to gz = o,
Then with (13) the form of the airfoil in the physical plane
can be aetermined e L -

As is well known, for a given obstacle and a given dngle
of attagk there exists a wholse family of flowe.  If the ob-
stacle ‘has a sharp edge; as occurs in the case of an airfoil,
all solutions but one have an infinite. velocity &t the sharp
edge. The Joukowski hypothesis consists of the assumption
that thls exceptional solution, which hag an everywhere finite
speed _represents that flow which has physical significancel.

The hodographs of the flbws around the same obstacle
(in the physical plane) lead, in general, to quite different
pictures in the hodograph,- and in the logarithmic planes. For
instance, in figures .la, . lb and Za; 2b, two ‘different .flows
around similar airfolls are 1ndicated Ags mentioned. before,
the hodogreaph of: Joukowski flows - has, in- eneral,‘a shape .. N
eimilar to that indicated in figure'i2b. ?It i1s noted that".;
this domain is partially twice covered. : T

If the hodograph method is used 40" pBtain the Joukowski
flow around some profile, 1t is at first necessary to deter-
mine the function (lng v,6) which is defined in the domain
E, and has &2 doublet at A, the point which is the image
of 2z = =. In order to construct the stream function
¥(log v,8), procesed in the following way: -Determine the
stream function in the upper half plane (Z-plane) - that is,
e function g{(Z) which assumes constant values along the
real axis and has a combined vortex and doublet at some point,
'say gt "Z ='i, and then -the-fugction K Z = Z(log V), which
. maps the .uppér ‘plane into.the domain” 'E, transformlng Zz.-= 1
‘into the branch point:id .of H. As, will be séen, a’ family
of solutions is obtained for:this problem.gf i B S

PN B

14 flow fulfilling the conditidons: of the;, Joukowski I?:
hypothesis is termed a "Joukowski flow.! '
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The axls of the doublet 1s assumed to form the angle o
with the real axis to obtain for the complex potential with
the circulation I' the formula-

L w(z) = QL log £ =1 , _mi el o _mi  -io (14)
72 +1 2 - 1 7+ 4

[
Réﬁérk” ”he ‘term _ﬂ log %_:.% yields a purely circulatory
. " 4
flow (see fia. 3, also reference 7, p. 326); wherogs
mi ( - -ia
Z - 1 2 1 o
and with & doublet at Z = i  the axis of which intersects

the positive Z-axis with the angle a. (Sée fig. 4, also
reference 7, p. 202.)

) represents a flow‘wiﬁﬁcﬁtﬁany circulation

The question of how to determine tho mappiing function
has a more technical character and will be considered in the
next section .

- o = '

+ " Suppose ‘now a funection “'Im[} gZ(V)>] which assumes
» constant value on the boundarv‘.h o (H 1e the image
of D 1n the hodograph plane, ). 'The boundary .curve of the
obstacle is obtained if, starting’ From spme p01nt say B of
h, xj;and y are de+erminsd by. integrating along h, How=-
ever, .in, veneral, the obtained curve will. not. be. a closed
curve,, In order that this be so, At is required that

L ) ‘-'.-- '

cos @:PWQE + famw 23:ihi EN
, .7p R - V.. - v...év.i 0”_ (15)
S A 6 R
W ‘ _ e
'U[‘ sin 8 g 27 ¥y l gy o (16)
‘lg . ‘v.g" ‘ e : \Us N ." N | ! ."":.'.‘-‘:.' ., ’('“." '| . .

“n . Ve BT AR I
) . Coe S I O e
where‘the integration 1s carried oﬁt alon} the boundary curve
h off:H, -Thus it 1is seen that, in order that the obtained
boundary in the physical piane be- 8 cloged’ purve, it '1s neces-
sary: t6" choose ry m, " ahd’ ‘in such a wav that both equa—
tione (15), and (16)- are satisfied X
[ 3 -

"o . . . R .t
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Remark: -IA connection with further applications for a com-
pressible fluid two separate expressions have been derived,
one for x, +he other for y. OClearly, in the ‘case under
consideration they can be combined together, and (15) and (16)
are then equivalent to ni

dw(V) - dw(Z)

——%;r~ 4z - (;7)
? (Z)dZ ' o _

Since w(Z) and V(Z) are analytic functions of a complex’
variable Z, which are.regular in the upper.half plane ex-

cept at Z = i, and -%YZ) does not vanish there, (17)

equals the residus of __ 1 aw(2) 44 the point 2 = i,

(z) az = : -
Write - Z2;= Z - 1 to. obtain for w and ﬁ?; the series devel-
opments .

s i = ' -
S %% log 3, + Ei%__ o, TeVL+ TV, Z+ L. . (18)

2] < p, p sufficiently small,

and therefore

i “mie ® LA L -
-+ ===k
1 aw 4 2 2,
=" = - F]
v @Zl Vo + Vg &+ V32 + . . .
ia .
[ mie iry :”:1 Vi, ]
zlzvm 2“ .. vm vma 1 .
ic Y gret '
4 A4 me . -
. mie® ( i, ot G).:_L_..l. .. (19)
z. om Y, Ve 7, o L
Thus the above condition becomes
. s
: ia
: . V. ne . .
I o2 cugn (20)
2 v g

_m -
. ©T 4
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3. The Determination of the Funetion 2Z = Z(V)
Which Mape the Image of the Flow in the
Hodograph Plane into the Upper Half Pléne

If the domain E 1is prescribed, then the function

-—’
Z(V) which maps E can be obtained weing one of the known
methods in the theory of conformal mad»ping. For instance,
‘“Pheodorsen'’s method (see reference 8) may be used to deter—
mine the function which maps the circle into H and then
compute the inverse function., The theory of orthogonal
functions also yields (see reference 9, chs. VI to IX) a

. - - ; . —
simple formula for the function ~Z(V).
gy
{. Denote by ©yu(V) a complete set of orthogonal func-
tions. Such a set can be obtainad fo1~ instance, by orthog—

onalizing the functione { v - m)) }’ wvhere o is the
branch'point .of the domain H.

3y K(V '§) = E; 9, (V) ¢,(T) 1is denoted the "kernel
' ' D=1 ' .

function" of the domain. Then the function which maps the
domain H ianto the unit circle, mapping the point A 9on

Kg(V, A
the origin, is ym —Eﬁ—————l, and therefore
/ Rg(a, &)
> =
- . /W ER(V, 4A) —/KH(A, x)
Z(Vv) == 1 — _ (21)
. v‘"ﬁ“K;I.(V. 4) + \/KF(A, A)

1s the required function.

.Remark: ®guation (10) may be wrltten in a little different
"form. Writing ’ .

2 = log v+ i{m — 8)

gives c.
V(log v,8) = Im g(2)

where g(Z) = £(2 - im), The passage from & to m — 8
means that in the hodogfaph plane’ the domain with respect to
the imaginary axis is reflected.
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e et

.- = '11, THE HODOGRAPH METHOD IN THE CASE OF
A COMPRESS.IBLE FLUID - SUBSONIC CASE
e, Iﬁtf&duct;oﬂ'

'In this part the hodograph method will be generalized
to the case of a compressible fluid

ThHe sﬁream function 1] (x. 'yv), in this case, satisfies
a complicated noniinear partial differential equation,
(see (28).) 1If it is assumed that the dens ity pressure re-—
latlon 1s of the florm

where p(p) 1is a function of. p alone, then the-use of

Y(v,8) instead of - V(x,¥y) .. ‘{as.-LShaplygin, reference 1, and
Molenbroek have shown) represents an important slmpllfica—
tion. If the variables v and ©8 are introduced instead
of x and y, the function V satisfies a linear partial

differential 'equation sS(¥) = 0. (See.(BO)_inste@é of & non—
linear one,-(zs) Y ' o

Remark: It will be assumed that (unless the contrarv is ex—~
plicitly stated) :

plp) = A + opk : (22)

where A, o, and k are constants. However, the method
developed here can be employed in the case of a much mors
general pressure densitxnpelgyionf

In the case of an incompressible fluid, instead of
merely a statement that the stream” function VY(log v, 8)
satisfies the Laplace equation, the general formula (10)
wag given for solutions of the Laplace equation in terms of
an arbitrary function f _of one variable { = logv-— i6,

The main purpose of the second part of this paper will
be t0 give an analogous formula for a compressible fluid,
and to derive from it the representation for the stream
function in the physical plane. : '

As will be proved elsewhere, this result leads %o a
construction of a flow around &n obstacle approximating the
given obstacle (in the physical plane)
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After a short discussion in section 6 about different
types of differential equations and developuent in section
7 of properties of the auxiliarny. function A(v) which is
needed in the following, an operator is defined in sec—
tions 8 to 12 (ses (55)). which-transforms functions £ (s)
of one complex variable s = A(v) + i@ into solutions
Y(v,8) of S,(W) = 0. SZquation Sy(¥) = is the ecua~
tion for the stream function (in.an nppronrlate plane)
for the case of compressible subsoenic motion., Then, if
the following formulas ‘are used

-/f pocos. ® [ (1 - Ne)w 2'+ vaw 3

X = x(v) = ‘ av
o pw \ye
. | (23)
sin 8 [(1 —~ M2)Wga2 + vay_2]
y = y(v)= -/‘ e, AL Yo oav
“o ' pV® Vg '
whlch are derived in section 14 and represcht a L,e'xez";al-— '

dizatiorn of. (13), a parametric representation for the
streamliaes in the physical plane of the corresponding
flow is obtained.

In section 14 are determined the conditions that the:
image of the given hodograph yield a flow in the physical
plane around a closed curve.

5. Differential Equations for the Potential

and Stream Functions
From the continuity and irrététionality of the motion
it follows that for every flow there exist two functions,
$ and VY, the notential and stredm functions, such that

LoBoy sl = vy, ‘f’% I (24)

L mE W, = = Vaa, - = Va
. p ¥ X " ’ y
Here * ‘v,  and v, are the Cartesian components of the

velocity vector and.. p ishthé ‘densisy. (See reference 6,
Pp. 228-22¢ “or reference 250, 2.) Fram the Bernoulli

relation .L/2 v2® + I = constant,'where. Ilg = kcpk YVe(r~1)

denotes the pressure head (sse reference 6, formulas (13},

p. 215, and (10), p. 214), it fnllows;that-
- I ~r kea caa vl - kel

1/2 v¥ 4+ ok(k,— 1) " p 7 r=iok(k <1)TT p T or
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~ 1/ k-1 )
= i 1 R R et St W £ -
‘_"'_-' p p.o‘;]' ~ 2 (k l)l_c o v ]
AL - . 1/k-1
T 1 e e
= Po z %o (25

- K k~—1
_% aoa(k-lﬂ¢xa4'¢y2)Jl/

n
0.
o
£
SRR
.

~

If (25) is subétituted into (24) there is obtained for @ and
¥ =& system of two nonlinear differential equations

v, %[1.— ']z"L aT® (k1) (¢xz+¢yg)]1/k_l |
S _ > (26)
x ¢y_:'t-,.1-‘% ”a;'a(k-—l)(q;x'a + an)] 1/k—1

\1’.

It is noted‘that in -the ease where the motlon repre—
sents an adiabatic process, A =.0, and in the case -of air
k = 1-4. N

Eliminating®. ¢ gives for WV Co
2, k+1 2\ ’ . -W |
) \g [ <__9.> ( ] oY [1-——-—-——-——'—,1 —
dx (p°a°) oy * (Poao)

k+a

(’p°>h+l >’J (poa )2< ) g\l:: :\; af‘é’y £ 0 y o (27)
T bt ) @]

~

Simﬁiarij, eliminating W from (26) gives for- ¥

- . R N

“'aztfbxx + ¢yy] = PR Py 2¢ """ ¢ ¢xy +¢B ¢ vy (28)

A x —'1)(¢x= APEI
- 1The derivabtion -of. (27.) and {28) is opitted here. " The
. rweQuation (28} :ia derived in reference 6, p. 260 Congernlng
(27)., see referenece 10, p. 5. ey . e
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Ags Chaplygin and Molenbroek showed, if the variables
log v and @ are introduced instead of 'x 'and ¥y, Bhen the
equations relatins the stream and the potential functions
become linear. If?

- (v, 8) = ®lxlv, 8), (v, 6)] l
L (=e)
U(v, 8) =¥Ixv, 8), 5(vi®)] |
is written, then, instead” of (26), it follows thaﬁ_:zT
P Po\. )
. (30
Ay = oV _ oy
(log v) d(1log v) . dv
Here ‘ y
¥ = v/[ag® - = (khﬁl)lel ° (31)

2

is the local Mach number. Eliminating ¢ gives for Vv a
linear eguation s o

So(W) E(?ﬁjf(l - Ma%Veg

<: > a(log v)'{ <p§> a(log Wioe V) 0 (32)

In section 11 a general expression®will be given in the
gubsonic case (i.e., for M < 1) for the solutions of (32)
in termg of an arditrary function of one variable f. That
is to say, an expression will be obtained involving an arbi-
trary function of one variatlie £ such that for every £
the obtained expression represents a solution of (32), and
conversely every solution of (22) which is regular at the
origin can be represented in'the afore-mentioned form with a
guitably chosen £,

1See Notapion,  rehark 1.

24 detailed derivation of (30) is given in sec, 3
reference 2.

. PIt is noted that in.. 'seb.:Q, equation (32) is simpli-—
fisd slightly by npproximating the coefficients by .polynomials.
The indicdted result réferg to this-simplified equation.
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Remark: It..is noted that for k = 1, K <1, oqua-—
tioh <(32) bbcomesl (in: appropriate variables) ‘the Laplace
equation.

According to (25) and (3%XL

P = Po [l + (V/;;)ZJ_I/E (33)

172
]

t= (v/ao) [1+ (#ap)217M%  on .(v/ag)=ul1-u? (34)

. a
Since Hl an = = - 2’.4(99/9)3 = 1 + (V/ap)z
. 1+ (v/ag)
and T O £ L é:
[1+<v/a)3—— - =
g log v an -
where
_ 1+ (v/a.o)ajlla -1
A= = log 175
- 2 [1 + (v/ao) ]
equation (32) bec;,omesl o
=0 : (35)

Yge. T Van

.6, A Remark on Different Types of Equations

" The first purpose of the Letond’ ‘bart of this paper
is to-give a~formula for soluxions of (32) in terme of an
arbitrary function of one variadls.

., Before the derivaftion of this formula is considered,
it 48 well to ‘discuss in some particularly simple cases
the "general solutions™ of this kind and indicate some
characteristic features .of suych:formulas.:

The following three equatlonsa-will be ‘considered,
where, p and 3§ arg raal qnantitles.

e

iThis result was £ irst’ obualned by Chaplygin. (See.z
reference 1, p. 99.) - :

°A differential esquation .A.uHM + 2Bupg + Cugg + Duy

+ Zug + F = 0 1is salid to be of elliptic’ or hyperbolic type
in the domain R, if AC - B >0 or <0 in R, respec—
tively. Ceone sty ) - . .. .. .
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(320, 3\ L 2%y . - T =y
PR o tewram Tousw 6
=R A ' '
333 0 (37)
L 'Qw A
335 7 (l - 1) 3u5 2 S 0 (38)

In the first case the "general.solution" is given by
V= 2(8) + &l8) = £(p + 18) + glp — 19) (39)

in the second case by

Vo= f(p) + g(s) (40)

where f and g are arbitrary (sufficlently many times dif-—
ferentiable) functions of one variable. As p and 3§ are
real variables, it is seen that in eguation (36) there is an
arbitrary function of one complex variable, and in equation
(37) two arbitrary functionms of a real variable, (Clearly,
in equation (36) in order to obtain rsal solvtions, for g
mist be chosen the conJJ.ga.te to f3; that ig, Flu — i4d),

A nulte different situation is met in the case of egua—
tion (38), . By the tra.nsfo:rmation N =41-p, (38) can be
2% L3PV |, '

33 I35 Bke The general solution in

reduced to the form
this case ig

-t /T T w- )+ e(UVTER . 0)  (41)

It is seen that the arguments 141 ;T;d:ﬁ are complex
for E < 1 and are real for W= 1.

'

‘The solutions behave quite differently than in the pre—
vious cases. It may happen that a. solution which is real
for u <1 Dbecomes inaginary for u > l Consider, for in—
stance, the function h ‘

F (l(l p‘)lfa ) > (i(l — u)l/g. +’t)> = (l — p‘)l/fé

On the other hand, there also exist solutionq which renﬂin
real in the whole plane — that is,
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On the other hend, there also sxist solﬁtioﬁs‘hhich femain
real in the whole plane — ror example,

(10— W)/ g)Pr (1 E) 2 48)7 & 20(is 1 * 37)

... Bguagion (32) is. of mixed type® and therefore a situa—
tion exists of the type exhibited in (38). Of course, the
behavior is more complex than in the latter case, because
(32) is not the simplest case of equations of this type.
First, the function . A(M) must be determingd;which may be
done by reducing the equation (32) to the canonical form.

7. The Function k(M)

In this section the. function A(M) is intro-
duced. For convenience, an intermediary variable H = H(v)

given by
aH(v) _ (42)

Lo . S awv v Ll I I
is employed. ' ' e

The equation (32). becomes ‘ "
- 2 . NP .
8o 0% 33
s(v) = > MEL ] Z."H —= '+ == = 0 (43)
V) < ) BHa () 38°  dH®
If M < 1-that is, in the casé of subsonic motion- then the
coefficlents of both \Uge _and WHH are posltive and there—_=

fore the equatlon is of elllptic typs. If M > 1— that is, -
in .the case of supersonic métion-~ the foregoing, coefficients_
Lhavse different signs, and the equation is hyperbolic. Y

In order to obteln X(M), (43) "4s reduced to the so—

called canonical form. (See refeyence 11, ch. I, sec., 1.)
Introducing _ . :

£ =A(B) + 18, E=A(H) - 18,%  (a4)

whers o . st : v Ll

aA-
4B

= PP I VI T WP £ W U(E); : tndt 1, - AALEY %*1(14i»i55"1’2 (a5) -

The local Mach number M - plays, in the case of (32),
role similar to that of u in the.casé of. (38)- . ‘

LRIt is nofed- ‘that, for .. M <1, ¢ and t .are_complex
quantltles whkich are conaugate to each other, for M > 1 they
become two (independent) purely imaginary quantities, (See

(48), (49).)
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the equation (43) becomes

Lo(y) = 2% . 1 _p? z{_a, [<1 . MaDl/zJ}[é_\hu éﬂg]
° aﬁ'az, ‘-.[.A_- 1 - M? P ov Yoo

where!l

N(¢ + T) = N(v)

4 LR URETR) e Wt
2 2

N

i

I

8

The function A(v) = A(M) may now be easily evaluated. From

dMv) 1 [aog -

—

_ %(k + 1)_v2]14%_

av v ' 1/;;'
2 1 2

it follows, by a purely formal computation, that
. a ol L 1/h
N . 1 2 . 2 l 2
1 - (1 ~ Mz) / 41 + h(1l - M7) / (48)
1+ (1 - w5 BN L a1 - w2yi/2

A(v) = N¥) = = log

1/= 2
(k -1 " for k> 1
kv 1/

 For M <1, A(M) 1is a real guantity, if M > 1, then
ANM) = -4 [(tan—l)«/Mz -1 -'%(tan"l)(h-/ﬁé - 1)] o (49)

is a purely imaginary Guantitir'

" *See Notation, remark 1.

' o o - 2 1/2
"For Kk = 1, A(M) = %_19g-[1 - (1 - M®) ] e ST

1 b fieo wEY/2
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Bemark: If k <1, rand M < 1,
‘ l 2y1/3
N 1)’ -3 1 —y® 1/2 + log [1 - (1-=M°) 1
- (1 (50)
. 1+k 1/2 LTI
' ;'—}::L:3;ff' ; :¥ lr-l: L o i

If k= -1, H<1 )

B L 1—.(1_-M.2)1/_a]‘ _' o [1+(V/a )‘]1/2 -'-l}
)\(M) = 1/2 lO:g [l'l' (l_Ma) 1/2 _ 1/2 10 [1+(v/a. ) ] 1/2 (51

or ¥ = Ze)‘/(1+ ee}") "and (v/ap) = Zel/,(l_\"_e.z_)‘)

For the application of this theory, the inverse func—
tion M = M(A) often is needed. 'This can be determined
either by preparing once and for all a diagram A = A (M)
for a fixed value of' k or analytically, representing
M = MH(N) in the form of an infinite series. For M < 1,
k >1 there is 'obtained.:

J'.‘

T(zx) »/l - Mz(zxf— e 1/2(2k+1)X3

-— -1- (4k2+ 6k + s)x - 1/24(241:3 + ssk2+75k+29)x

(481: -+ 212k% + 392k? + 328k + 103)x° H

— —-J-'-—-(480k + 29761:4 + ’?968}:3 + 10788Kk2 +' 7266k + 1935)1

—-5-8—8--4(2880]: + 23472k° + 84232k* 4 162124k3 + 173940k

+ 98086k + 22675)X° — . . . { (52)

(k + 1)1/2 — (x — 1)1/2_ (k - 115‘

X =2 637\
(x ."'...1)1_/2 + (x — 1)1/2) S

. If M varies between O and 1, \ varies between
—» ‘and G: The proof of the convergence of (52) for A<O
is given in sevtion 15.

. 1The corresponding values -of - 21, .M' and v/a for
k=205 ‘and k= 1.4 ! fee

~are given in the tables Ia and Ib,
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8. The General Representation for the Solutions of (32)

Theorem (53). DLet the function E(H, 6, t), ~1StS1
be a solution of cguation

G(E) = [__‘.];..:_EE.. A 2<§§+ iEe+§.EEE. .{ +-~.§.§§.L.= 0! (53)
AH 2,ﬂH~ _;t ‘Vl -— tE

which has the property that

o 3 = / z
i-<EH+ 1E> AH L - % + EJ/1-% AHH J (54)
e )
AN t(A+ 18) 2t (A + 18)
is continuous at t = 0, a3t A= 0, and at 6 = 0. Here

S is gziven by (43), ang

(See (43) and (45).) Then

VY(H, 8) i/ﬁq E(E,0,t)f [%(A(H)+ is)(l-tzﬂ atM1-t% (55)
Ja ;

where f(s) is an arbitrary, twice—differentiable function

of one yariable, will be a selution of S(V¥) = ©.

Proof: It is notlced that

= Lag(1- %), f9==§(l-t2)f', £y, =—C1(A+ 18)t  (56)
her
where N af (s)
8= g T
Therefore
1 Ag(l-%2) 1 (1 — t%) ify
o= L AEIZTEP . 0 g oL A1 2 ). 0 JIZE (eny
E=T 3 Y(h+18) ° 7T 2 t(hs19) " 8" Ay

¥ow, bdy2® (55)

1if ], tndicates differontiation with respect to %,

®In order to be completely rigorous, the integration
1s carried out along the curve — 1< t< ~¢, t = €e?,
- 7S @S 27, € €t <1, Then the integrands in (58) and
(59) remain continuous along the path of integration. By
use of the property that (54) is continuous, it is possible
to let € subsequently approach O,
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T, LT +1 +1 . )
\UH::f EHf_.__‘lL—+f _EfH—‘:i;E—_—;

B —1 T M1 = B e C 1w B

oo o - : ' &(58)

' ©mtkl T TS
=f+l Egpf —St— - f IVIZt" Ay ar dt '
-1 /i~ o2 —1 2 g(A 4 'i8) at '
Integrating by parts gives for-the last term in (58):

wH“fﬂi/EH : EJ —t2 Ag > _[5 J1-% Ay !: } (59)

2 t(A +.18) LE t(A+ie)

-1

In an analogous manner there is obtained

+1 Eg E':,J]_-_te ¥ ] | B E-Af1~-tR2 1 . 1‘
= il . — ——— i} . e ——————e = f
Ve ;/:; [JJ.’--'(:"i +(z (A + ie) % at 2 (A ie)F ‘{t=—1 (60)
- ‘ T : e

Now, differentiate (59) with respect to H, . (60) with respect
to 0, and multiply by Ag=. There is obtained finally
=
+
Vug * 45 VYo

f“ S(E) +[~/l-—t‘°'- A 2<EH L DAEE B, Eei)]
../1-1;2 t(A + 168) T \2Ag Am® 2 2 /.

j""l EHfH '(gdl = t2> Apgfy . Fofely .
JiotZ 2 (s g (A+ g8)  JT—EF L

,;-(9‘_' J1—- 52 ) ApPrg1
2

(.A. + ie)/ at B i 4
V1—t2 [ BAg® 2
Ag — 2=
2t(A+ 18) PECE C TH s 1oy ¢ Pfmm + Beby
- 2 — Lo e, :
+ ——E-ég————rl}f ‘ t—-l. . e "_ S ) ‘. "-" i - -
(A + 18) 1) b1 EE T TR TP
- e PP B DLIC IR
ﬁ 35 l’ ]}}tn : o e
Aty + 1l g S AR LA -2 B
21;(1: * 16) B H SUTgmmn v T
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Using th:.last relation of (B7) it is scen that the second
and the . fourth term in the second integral of (8l) cancel
_each other, and if fg = ifg/Ag 1is substituted, the last
"verm of (B1) vanishes, Employing (587) again and integrat—

_ing by parts gives

+2 EHfH ;d.t.- f+1 BgpJ/1--t% AH

J-1 "/.i—.—" £° 1 2t (A + 1i6)

£y

) <EH”l't2AH +JC+1<EH“1"t2AH> £ dt (62)
T\ 2t(A + 10) N 2s(A +38) Ay
‘and o 7
Y Egfy AH +1"'E91AH3 JI<%8
dt = -JF fydt
Jr— £ 3 - 2t(A + 18) L
D _iEeApE i — v® 17T /‘+1<1E9AHQV‘1*55> £ at  (63)
2t(A + i8) 2t (A + 18) & R

. Using (62) and (63) gives

b
WHH*-AH wee

+ 1 l "..Tl::..i. - } R D l'\ |
= f f S(E) +[_ /i ¥® ‘A'H'ECE‘E. + iBg + EH :2-\] }dt+

1 /I <52 Lt(A+ 16) Ag K~_ /
‘...........__..l 3 .y | "2. N -

which implies theorem (53):

o, A Simplificgtion of the Problem

Following the present 1ine ‘of attack the next step is to
investigate the solutions of equation (53) and . to determine
those among them which are most appropriate for ‘the develdp-—
ment of theée theory.

However, the mathematical. ﬁnaly51s of thié qﬁestion has
not yet been developsd to the extsnt needed inm' the cas.e. under
consideration — that ig, in- the\general case of an euuﬁtlon
of mixed type — and to work out this mathematical theoryl

1The author will_deveIOP this approach in a future paper,
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here would lead outside the scdpe of the presént paper.
Instead of this, two simplifications are made, by which it
is possidble %o employ already known mathematical results,
e UEY

Firsgt, only the subsonic case will be con51dered. This
means that the soclutions of the equation (30) will be con—
sidered 6hly in the domains where the equation is of elliptic
type. Secondly, function F in .(70) will be replaced by a
polynomial Fp in e*A  which vanighes at A=— .

" In the "gcase of an incompressible fluid where V¥ 1is a
solution of the Laplace equation there is obtained for the
stream function thé representation

V(v, 8) = Im £(s), & = log v — 16 (65)

in;téfms of an arbitrary function I, of one varilable.
(See equation (10).) '

Generalizing this result, it is found in.the following
that the stream function of a subsonic flow of a compressible
fluid, which is a solution of (32) can be represented in
the form _ . el : ;

. [ T T e L DL Y
gt .o o - . o manes s - . . s N ;

W(V, 8) = lim IIm{H(';.) [f(g) ) ' R

+i .(2.3_)_ (?)( )f -ﬁ;n—-.l}ﬂ('t“ yat """}"'ai ]}(66)

where g = A(v) -|- ie and. H("V) and. Q(n)(v) 1;=1’ .2' ,-~,. .

are functions which depend‘upon m, v, and k. PFor

k= 1.4, 0% = ()

= lim Qn . are. graphlcally rsgresantJﬁfin,'
m__;.m Swray o wee )

tabler Ib.

The remainder of this séction and sections 10, 11, and
14 ere deyoted, bo,an exact--formulation and derivptlon of the
fo%bg01ngﬂrepresentatlpn for the stream function. AN
Lo In praer to link tne ensuing ana1y51s with. stanaard math—
elmatital Drocedure, equatlon (B30) is reduced %0 the canondecal
form Ly(V) = 0, (see (46)), by introducing the variables

1The mathematical details of the proofs in secs, 9 to
1)l mey, for the most part, be omitted by the reader whose
primary interest lies in the field of physical applications.
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[T l
n

f = 2(¥M
b (A

\ &

oS
[5-}

—
()]
-3

e

Y + 38
I'-l-v

M) -

(see (44) gnd'(48);1 iﬁe éq@éﬁion,(éz)'ﬁéégﬂesf_z

Gl(iﬁ)= (1 — ta)(mgt+nmt5 - t—l(EE + NE.) * atf; Lo{(E)=0 (68)

The condition (54) will be satlsfied if (EE + NE)/tﬁ_ is
regular at the p01nt §=-01 o= 0. LT SR

If now, instead of W andl.E,

o Y¥ = [exp<f Nd('§+ w and B* = [_exP(ff*»’M(H)] (69)

are considered, then L, Dbecomes
L(V*) = ¥*%F + FU*=0 (70)

where

F =-(N§ + N®2)

= (k + 1)v?
an - "(k*'l)v ]W% [ao - —-(k 1)v® ]1/2 2(1 Ma)lfz

v

o (e E1de

sl 0l Tk + 1) w2 Plao” - —(k—l) 2]

.(k_l+1)v-'*'[16.a04 + 4(1"—2k)a0 v *(k+_1)73
64[@.“0 (k * 1)v:|=[ao : (k 1) -j-

_ (x+1)u? [ (Br— DM —4(5 ~ 2K) M2 + 167"
64( 1.~ NF)°

C(71)

N Yo
[
s

Since A and M. are:.connected by the :relation (48),
the expression F is s funetion of A which has a pole of
the second order at A = 0., -And:.-A = 0 °lies on the boundwry
of the intervel of: variation of. AN since, f M ranges over
(0, 1), A .ranges.over {=wm, 0. . - :
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The second simplification s made by replacing the
function -F..dby aR?roximatingl function . ¥ which is a
polynomial in of the order m_;and vanishes at A = ~oo,

- In - =eation 16" it 1is nroved ‘that in every interval
(-0, N ), ""Ag < 0, the original F may be approximated
arbitrar¥ly closely by such a polynomizl, This mesns that
to every: Ry :< 0 and every e > O,; there is deta{mbne¢oa

polynomial T, in eM, Fp{-o) = O -such that
iFm - Fm(e7‘5 S ¢ for =@ AL, - (72)
RIS N A A
The following is now proved
PRTE Y Leddw (67), To every polvnomial " Fp(2A)  in e * there

exists 2 constant ¢, such that

a¥r_(2))/ank Fc(zﬂf)'./(-?\ 2 eor A< O and K=0,1, 2,y . .(73)

Proof: * Sinide _ ' . o

m
.- F (?A) = S- cKezxKn“pK . constants m“
2 ".-.:,- R;—Z . , o

. the derivatives of a single term-..eSA, But a¥e S\/dk

= sKeSA_ ard ag K - o F'/( AE)K°**> @3, ,tperﬁjora there

existe’E: & seh’%hat

Cot dK S?\/d)\K —'Q(K'Fl)'/( )‘)K+2 K; 69 ll""B! e e (74)

1In some instances it is expedient to apprroximatse , F,
by the sum of = polvnomial and a funetion which becomes in-

1
finite as = at A = Q. o
In this second case it is necessary to use the reéuﬁt
of reference 3, sec. 4, instead of theorem (83)

oA
YA

Note that in (4 2) of reference 3, . GF (k + 1)(m - x)k+2

cIl{k +.1 .. -2
should read \: k+g; in (4,3) [P (n"+ 1] should be
(v = A) - .
[F(n+ 1)7T%; =and on line 11 of p. ,279 lim c(n) = 4
' P o L . Z.—n:” B e3> 7 T2
should be “11m™ (3<n)?51’én"'= % 5t '

n —> o,
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In sections 10 .and 11 an integral .revregsentation will
be derived in “terms’ of analytic functions for the solutions
of Lm, the equation résulting from replacing T by P

in L(w*) = '0; that is, L (w ) *— +-Fm¢* =

Le

10 Lemma:

R .
- - L

' Lenmms (75j: 1f E*(C ﬁ,rf) 'ig'gzsolgtion of equation
2 -
Go(E%) = (1 - ¢7)E% -7t B+ 208 [Bf g + FpEr] =0 (75)

Et DA

and E*E/Qt is continvous at the point t = 0 and ¢ = O,

+1 . . . e .
o v = SRR : a,1/2

/ E*(¢, C, t) f(—%t(; -t ))dt/(l A (76)
.‘Ll ' . |
where «£(z), &an arbitrary analytic function of a complex
variable =z, 1s a solution of S

ipt T = 0 (77

Proof: Differentiating with respect to { gives
Eiy LT

oo L
n;/P E% fdx/(l

<
Ul d

g%y¥e T (ng)

Differentiating again with respect to { gives

. - AT S o ' -1
2
vy = Fprae/-e YME 4 [emx £ at/(1- £7)23 (79)
[ ¥ J ot -
ot Tl
'If it is noticed that .
__f§.= %(l - ta)f' and wftW:“ngth
where I c ' ' ’
TerTodf(e)  Tvn Dot
ft = —=277, s = = (1 « t7)
there is obtained
S 1 (104 783)
f, = =« = STl f 80

and therefore
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+1 +1 1/2
bl . 2\1/2 .. 1 (;L - tz) En
B £¢ 4t/ Q—% : ——-——{-" . Bx F.dt

(= 53)37e =1 +1 [(l—t)l/z ]
T 2t 6 Bt ft=—1+~/.‘_; TL o2t Eftdt(al)

(by integration by parts). Substitiuting the obtained value
into (77) gives S _

(1 — %2 )1/2 . t=1
ts Ef £ ‘t=-

.:'_.;-.-.'- r '+l (l _ ta)l;z *] ﬂz + FmE* } (
;..+‘.\/:1 f{[ T e at -(82)

which implies lemma (75),

IUZE + Fp¥* = —

.11. The Representat‘.ion of the Stream Function in the
Logarithmic Piahe for the Subsonic Qase

Theorem (83). Let -Fp(2A) e an analytic function of

2 real variable, A, defined for A <O, yhich possesses the
property that vy T, Co (-
. o . % . et ] :k
afr | < (KL ) 3 < ’
—F = 2~ for A®0 end ¥=0,1,2, ... (83)
axn (=%) ‘+ : o . . .

yhere c 1is 2 guit blx chogen congtgnt

Fur’cher, let Q(n)(ZK) = 1, 2, ., denote a set
of functions which ar ef_i_ng by the recurrence formulas:

(2n+1)Q(B¥ W4 oh i (0) 4 4p o(8) =0, qu(¥)—amy
Q(n) (a) =O, a< 0O

Finally, let g(t) _’Qggg ana_lzti_g function regular in
domain B ywhich contains the origin, IThen

lo
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Y 1_2_1_1)__ Q(n)(zx)[g...v/:gng%t Yaly . . d gl](as)

n::l

36

V*(h, GD

willl be a2 solution of

e t——————— Sy

vk = 1 52y J R )
%w* + I‘m<2>\)\'b* = % <BA2 + 592> + Pp( 2 )y

= Yoo+ Fp(aa)y* = (86)

:£¢

which isg defined in gfg;x gimply connected domgin lying in
whers - H. denotes the domsin

the intersection of H and 3,
82 < 3AR, A <O,

Proof: If |
3 3_*_ =i t.ﬂl,./a. y (t ¢ I/Eﬁaﬁ'”‘q(n)(le)- (8%)
. nm ' .

-then it mustbu shown tha.tr E* satisfies the equation

G(E*) (l—t)E* ~-t’1Ei+2§t[E_’£f+FmE*]=O (88)

t s g
x
(see equation 76), and that EE‘[ Et s regular at t=o0,
t = 0. I*  formally eatisfies ~eqiiation (88). In fact,
Ef - %ﬁng&l) '.*’..__.- .. ._ﬁ:_;__'ten—la Cn—-‘:l'.Q’(h:rl—l) + . ‘
E‘E‘ = tﬁQ(l) Coe . ¥ (n—l)tan—sgn—lq(n ;)+ c e e
s ? (83)
<-.- + qul?\ + .
Cemn-afl, ne2n (1) n—1 (n~1)
+f -v?--[gfn- }).-C "2, r)y L 6 . }+. .o

Thusg
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_E%'t = ~tit Q,.SL’-).'.L e o« o—(n—1)t323 ;n"l (;_1) ~

t,:an-:. tn (n)

t 2 = -. . + (n._g)t‘?n—algn 2Ql(n—2)

47 ) 5 SR,

+ (n—1) tan—lgn"lqgn—l) P

‘=.-<-%t§q()\1)+ v LeErmegnaaTy)

3 w b,

" 1.2p-1 ¢n.(n)

PR .> A CaE L > (90),
f .+ . —(n-2)t2n—3 gn_z(QI;:'l)
R R e T
-2t LBp = { o1

- = g2n—3 §4£-:7 :.Q(n—-a)

_ lg=a~ (n=a)yy _
5 nlﬁﬁ'q

=24 LBy E* = 248y~ . . . - ztan—agn—lp Q(n—l)

_ gy 2 1__@ F’mq(n_l) -

. / .
or

+ Q{i )+4qu(" 1)] ... (s1)

which implies (84). Now, proceed to the proof of the con-
vergence of (87). If.4& is a domina.nt of B ~ that is, if
for all derivatives “&Kﬁ/dk =0, 1,2, . ¢« ., it fol—
lows that .
IdKB/axKls d. A,,/d?\K Km0, L, B, . L it aE A <0 (92)
R T & 7 I T oyt

Thls will bo ind;cated by ¢

3 << £ or A ==>3B (93)
By ‘the i'e:ciurr;eq;q.em,-_for.mul;a: N \
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(2n+1)§(;\n+l) ~(n)+4c(-k) [f ain)an e 2222 )(x)‘n] (94)
a

§§1)= 4c/(=N)%, | gl kayie o
the functions Q(n) ;felkﬁtfsdﬁcéd.'
Writing Qin) = c(n)(—l){<n+#)i'gives

(2n1) () (La)=(e2) o <<n+1>c<n>+,é_£g(—n-_3> (-A)"(8+2)  (g5)

r -

and from this is obtained _ _ B

! : clntl) 1
S | . = = 98
AR TTTETE (98)
Thus, the series
+ O
1y LR ) - (97)
n=1 '
convergesg for
or A2 + 87 <4r? (98)
—2A . Lo
It 1s shown now that

. 4 , .
Clearly, -the Q(n) and all derivatives dKﬁ‘n)/dhK are
positive., . Purther, by (84),:(94¢), and (83) it follows that

Q) <<gla) L B (100)

Equation (99) follows by induction. Suppose it holds for
some n, say n = u; then, by (84):and {94},
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5
i1

Sa '-..:l_.._ o o . .
..1.‘_ S SR A, o e
Q(Ll+l)+;_ — e l [Q(l—b) +4£F*Q(u’)d;\]

} (2..L+1) ,

: A
s_1 R R A S () ]g"(u+l) (101)
(2p+1) [Q’)‘ * 4c°?/j (—).)a-Q ax Q’.

. Fu;tger, since;all derivatives 5&%&1) of Q(u+l) are com—

1

binations of the defivatives Q§ﬂ> of Q(u) with positive
’ 1
coeff%c;ents. ang pince the expressions for Qig ) in fterms
of Qh? hgvg the sanme structurn as the cxpredsions for
(p,+1) ~(p) (w) (w)
Q in terms_of Q. ., (1L00) follows. ‘Here X = -1
.. n—-'f e AI‘ - Q’A 6?\?—

Thus*tﬁn fwn&#hnr“ﬁﬂ"‘introduceﬂ in (87) is a solution
of (88) gat'igfying the condition: Ep/at regular at ¢ =0
and ¢t = 0.

s 24 \‘-: " ‘-'., f’ ': '.:.-.‘ ..". I".:._. . . .
© By lemma (-75_),.__1:9, follows' that
+1

'ﬂf*‘é‘g'*xni"E[”'Eg r, t)f(l ¢ (1~ t2)> ‘at J (1 ta)l/a] (102)

-
P Y

N

where 'f(d);%'an'arbitrary analytic Funebion of a- camplex
variable 2, is a solution of (86) The series_(102) con—
verges‘uniformly for 6% '<z\?®, Therefore aftg;”replac1ng

E* in {102) by the right—hand side .of (87) the or&er of ﬁ'
summation and integration in the resulting expteésion may be

changed to obtain e P T SO S
e :.' '."-::'.-‘i“ll';:-'t ‘,.
.idf [ 1 £ (1—¢ 2)}-dt/(1 tz)l/z fa;..ififmjrrﬂm.“m
. TR
o ; . S TR 3 B
P 2_5 'Qf'('n)(zx)inf tahf I—l € (- ta)} dt/(l—ta)lf‘z} (103)
R = ; R
Siiwo %120 U e A ' ST R T
. e : g 'D_ ‘ oy b oy T . . P
Let (%) =y apZ 5, and write® - - ¢ T

.V=0

(o]

T'(») 1is the gamma function fo e~ ¥ x tP71 dt; so, for
integral valuos of p, I'(p + 1) =p! =5p(p - 1) . . . 1.



40 TACA TN No. 972

m/j; [l—ﬁ(l—té)} at/(1-t2) = g{°)(0)

g(n) (8 =/£ C#; (;Vtég ':-§’:ﬂ a“t”+nr<°+‘> (3)

o 2Pnvv) v, L (v+l) T (1)
"VP=0 .

'."o
(104)
no=.0, 1,28, ...
Then o
o n+v 1 V-3 n-%
¢ ftenfL%§(1~ta)} dt/(l~—t‘°')1’2 S_‘angz f(l t) g
S oG ) e
’ = .,Ev ) P(n+v+1) &y
i (““‘Xn——) iy avf‘(vw) (-) Sl
2 oy (n+v) .+  (v+2)D{v+1) 2V

. <2n“1)(?2;?) et o) () = e Cade)  (a05)

Substitute the last term of (105) into (103) to obtain the
expression (85) .

12° The Evaluation of the Coefficients 'Q(n>(M)1

It was proved in section 9 that if F 'is replaced by
Fnp the series obtained for E* converges, and (85) rep—
resents a solution of (86) :

’1

It is important for praétical purposes to comnute the
explicitly. Since m can be chosen so large that in

Q(n)

i1in this .and the fallowing section advantage is taken
of the remark in fobtnote 2 on. ‘p. 10.

®In a later paper the corrections td.be made in order
to pass from the Q(B)  obtaired in the above—described
manner to the Qm(n) obtained using a polynomial F will
te determined, It will bhe.seen.that,.in general, tRese
corrections may be neglected.
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the given interval..(r.®,Xo), Ae< O, Fp .and any required
number of the derivatives of Fp differs by less than any
prescribed € >0 from the corresponding derivatives of F,

fhb».gcp) will be. computed. using the function -F ‘"instead
of Fp. As will be shown, the expressions obtained for

Q(n) consist of a finite number of rational and logarithmic
terms in B K L R S
T = (1-42)1/2 . (106)

f T . Vome Lo b -
. gy vi v -

(Fer the relation between A and M, see (48).)" From the
second equation of (84) '

A ""é<2k)
v, Ql*) =~’—4'[ F ax = ~2 [ p 32D 4n
A SR cp e s . aT.
2 o ES:) . -0 - Co . . 1 .
- ‘é‘ E'5(1+k) _ 12:; N 2(3:—7) + a(i+2)
; 1L 2® T ™ t-
- {:\ L ‘ o m2 :
' sOOn T e (31{-—1)‘1’2]‘ e : aT -
. (T°=1) (1—h=T2)
o {krl) , 18k
] .8 . k-1 - -
- A :u,\-":,. ;"(“ k-1 T
4 og Y T (i)
(kz_l )kz_l l-— k=1 &L p
S k+1' T=1 N
- WRSPARY I e ..:..... 4 . 1 i 1
Setting =n = 1 in the first expression of (84) gives
[ N e -
S A y Lon e
: 50,;\’) = ——Qf\;\) 4FQ(1)
or v PPN , !
P izl ) A anlihe ,..__,_:N_.._.M (1)(%)
1 i 1 - 1
A =-— /. .
EERERE RTINS AR ( 52 : ;f T ~.'g,- ‘ Q-é-"l(-—w)
?—%—Qk +—Jé-ql =§-F+—]g-ql . (1687
RN 1 . } . ;} : A
vl b SR
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]
~

. .. . L . s . . ‘ ”:‘ s _i Vel "'
It is noted that, in general, it ,fqllows=.;‘.pcm..¢(,84) that.: .

. : ST " - 'y _ T( 27\)
(2n+1)q{2*1) - —q(n7-4 f {2y cn—_..'.- f (™) agl¥ (109)
. —09. . T(‘*&)
gsince from (dKF/dXK)K =0 it follows that
—m .
Dy o
o{ ) (=2) = q{2) (=) = n=0,1,2, ...
Thus there is olhained
L <> > (2)°
(3) _ _ 4 £ 1) _ 18 FBdA-Pl— 1
5Q - 3F7~+_3FQ - B, 18Q'
) * = . —0o
or
4 (2) » 1 (1)’
(s>—___===- '--—F 1 lé'/" FRAA + = (llo)
-
where
k—1 o
o (o) |
F, = {E+1) el 7 [—'—30(k+1)+48k'1'2
128 p®
‘ —4(3k—7)T4—2(3k—1)T‘;|
and . t"
K 2 ‘
f 72 gy = 200kr1)”  10k(k+1l) . 39K?—80k—115
‘ g ® T’ 5T°
—_ -
. 2(11k +48K%+59k+20)  41k* - 96k®—18kZ+112k+01
s(r+e1HT - (x+1)% T
N 2(3x" +17k —15%° -21k+8) _ (3k—1)2(k+1)
(x=1)B - oux o 3( k1)
In order to obtain Wﬂﬁnm w* (see (69)) it,is necessary to

have

. g 1
R ¢ f N§<a§+§>\ [ ) )y

2+( k—1)M"
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Thug

'y oK oee
AR S

.m

‘“.,('?'9=)r =, 3;-_-[.1.“'-5(-“ +§“ 1;52:”(’1);1) H) ﬁ'g( )(t)] (112)
S ] \

where Im = imaginary part and (n+1)(§) f’ ( )(g)dﬁ éb)(g

= g(f). In order to evaluate ‘the terms af QSB) We and Vg

are needed. et e .
e e e . feoeow ‘ .‘:-

Differentiatding (112) with respect to 8 and to v,
respectively, gives I

¥

4 -
I SRS T A o

Vg = H[Re 'égfi‘*f 34 ke sg‘f‘fj.-%,f‘(z)ﬂe & ] (118)

; (Re.T real part . . "I,

i i F—
! > d
h

v '=_-':'.3-°~.-(-;-°;> Tn. gy + R(l)Im g+gR( )im (1 )_,_%R(S) Im g(z)

v U
"'w"he!r"e . R( 0) —‘.r;.H i)‘.. y ’ R(l) '_=,: H Q( 1)

i '.':R;n)~ [(Hq(n 1)> - 2n(2n—l{n ( )] & :-:r:1'=.‘2, 5 . . .

« 1 he

The values of H., f®) =1 Q,m(n), for k = —0,5 and those

i : L mn—o . .
of H, Q.(n).R(n)r- limR (= :) ?or k= 1. 4 ars given numerically
o =t : T . A

in tables IIa and IIdb, respectively. TeblesIa and Ib give
their graphicab representationsn

gemark. If the origin is moved and A is replaced by A¥*+ o
that 1is, setting ‘ .

£f15‘§"+ a, =10+ a, oreal,

equation (7C) assumes the, form:

Mr. B, Ostrow assisted with the computation of these
tables. ' '
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= % g (2% . 2N Lo (1s)
To (0 = ag*a;* YT ag* /-

The general formula (see (85) and (77))may now be used for
the solutions of (115).

Since F'= ~(N¢ + N®)(see (71)) it" is -found that Fm
= F(g*-a, g*-m) Using (109) gives
Q(n) = Q(n)(gx* 2a), Hm==H(2k*-2m?L

"Thus, the generalized'f$rmu1a (112) beconmes

W(v,e) = H [2}*(v) - 2a] Im [g(g*)

* Ez. 22552;; Q(n)(zx*(v)"3“)€<n>(§*>] (115)
N=1
g(n+1)(g*) 5jﬁ§ g(n)(g*)dg*» = NIVRI

]

L]

13, The Behavior of.s ‘Sulsonic Flow at Infinity

At the point 2 & o + 1B, o, B 1real, of the hodograph
plane which corresponds to the point! g = o of the physi-—
cal plane, the stream function V¥ has a singularity. This
fact leads to the study of ‘the singularlties of functions
‘satisfying (46)

If point a is & branch point, then the use of formulas
(85) and (69) yields a aingularity ‘which possesses the de—
sired features. Indeed

. w(u.v>,..e>. = H1(v) {Im [ )1. S _'.Q('i) <(a_._. g)l/;_ al./2>

I
| »

- , +-23,—Q,(2)<(a—§).5/2 —al/zg'—-5?~a3/3>+.. -

1T“15 mMesng that the velocity e’ -if obtains at voint
-(of "the physical olane). - '

I
ll
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is a strean function which is tg%—valued at point a and

becomes infinite as {(a —- —~ that is, it behaves
like 1/(a— log v+ 19) for the case of an incompress—
ivle fluid.

If, however, point "a is nét a branch point — that
is, if (85) and (69) are applied to the function
& = 1/(g.~.f) ~  then

Jtl .

( (Z)e)- w5 (...._.ﬁ %ge I ng(a_m,logg
+ 3 (2)(v)<ka~§)leg(m— )-—(m—g)log(m+§> ;} uf:(lls)

is obtained. which is not & single—valued functi9n.

For the sake of DPrevity th;'case of g = logla — ¢)
.is not discussed, but here alsqe,; in general, a many—valued
function is obtained., '

The function (118) can, however, be made one—valued
by replacing the many—-valued term (9 = arg-g) by its mean
value (in the sheet under consideration).

Clearly, this new function will no longer be an exact
solution of equation (46), but in many instances it will
not differ very much from an exact solution.? Plainly
this procedure may be refined

I% is, however, “of. .interest from a theoretical point
of view to determime (exact) soclutions of® (86) which are
single~valued and have a logarithmic singularity at point a.

. ) Clearly, it 'is sufficient to find functions for equa—
tion (86) which possess a logarithmic singularity.

A function
w*()\: 83 Kos o =W(L E Qs E)
- a8 Bt To) 1ee (c 4

+ 30, G o Co) (119)

It is noted that 1n'"th1s ‘mse expressions (136) will
no laonger:be complete differentials, which fact may cause
‘some difficulty if a - is an inter¥or point of the domain,

2I’;':ié'assumed heré-  thHav: F. is replaced by Fp. (See
sec. 9. "
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which, considdered as a funection 'of ,ﬁ, §, sat taf:ies equation
(86) in the whole plane, except at the peint = b,, s

termed a "fundamental solution" of sgquation (86} with the .

Clesarty, VY = W(f, {; a, 2) represents a desired 8
stream function with & singularity st ¢ = a.

v

Notation: If W —We, ¢ an arbitrary constant, is regular =t

point a, the- corresponding flow can be said to have a pseudo—
vortex at infinity.

! The functions' .4 and B may be obtained in the follow—
ing manner (see sec., 7 of reference 2):

Let 'd& new %ériable be introduced:

£, =t-¢

[l - (o] '

(120)

Bquation (86) then becomes

CaoL EE§7¥§? + Fp (8, + Lo; Zl +.E0) =0 (122) .

RN

A fundamental solution of.(121) with the affix at §1

= 0 will be a fundamental golution of (86) with the affix
at g g 0 ' [

Substituting W = %'alog 51 + La log §1+ B, a=a’('§1,§1)

B = B(ﬁi,ﬁl) into (121) gives

+ By g+ FgB = 0 - (122)

Therefore a is a splptiyﬁ:af_(ié&);whiph-has_ﬁha property
cnet (s /b + ay [ )ud deeiinl ds 80, T, = o, :
f L 1 1 [N B . " . -t

£y

PR !
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¢, T, t, ( et
a=1—_ff ¥y ¢§2a§ +jfl%tff 'F'm-aé c1§ d§ d§ R i(123)

o "o

ig a desgired §olutisn of (IEIT Khi B 'is & ssolu-
tion of the equatioch g ”

Bglzl_'q- FpB+G=0,v" (-f /§> ( a¢ /f> (124)

It f01lOWS that

.
-~

PRI IR

g 6T, (6T : .
f [ G6.§ [[ [f Gd.f,sd.ﬁ a§2d§g+ . _'."""'(_‘125)
0’

re

Remark.l: As indicated elsewhere, the thesory of operators
yields an alternative expression for a.

In references 2 and 12 a function € was considered
,which is a solution of (75).and.therefore which when sub-—
"stituted 'into (76) for & yields a solution of? (121); €
has the following property: = :* -

s ae(tnlaie) - 1+;c; (T <1§s>

where €y _is again a regular function of Ll,flﬂ (See refer—
ence 12 formulas (1. 12) L1 14), and {1. 15) ) - -

If the function E 1is denoted by e(cl, 10 63 §0.§0)
corresponding to equation (121), then *~

: +1 1
a(t.,t.) =] cat/(1-t )”2 mizi+ b T [ e as /(1~t3)*73
1 .1' \‘:/: 1 1./_‘1 1
. y;elds a deeifeﬂfeplutiphrof tlzi);:h$§qe. :
_ " - +1 _ _ :
a(t,8, 8.8 -fe(ﬁ e P o S T SN E)at/ (1-t2)272  (127)
P, - . -

1The functions Q(n)(v/ao) which correspond to € are
not real. This was the reason that in réference 3 and in: the

present paper a n w solution E is introduced which yilelds
.real funotions B)(v/ao).

In reference 12, sec. 1, the function ¢ igs determined
in a form of an infinite series,

It is observed that for various equations € can be
represented in a closed form.
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T K
The function W satisfies'épﬁetia% QSS). Clearly -

T AN = S
38 . N [(henoX® W (8- ey TR

‘.

+ Ay log [(A=2g)® + (8 = 8,)%] + A, (128)
L .__6‘;.- o N ’ ) *

where A, A, and Az are entire functions, is also a-golu—
tion of this equatien IR ' : SR

' B 6, arbitr: tant
2"8""‘,' 1 ) ar rary constantcs

is regular at .§- a, then it can be said' that the- corre-—

. LT f'.! .
Notatinn:’ If-‘ﬂhiiolw*—-c

aponding flow hag a comhined pseudo—vortex and pseudo—doublet

at infinity.

"

e By refining thig pnocedure (namely, considering func—'

o Ce—1
tions A4(§~w§(o)) + A4 (ﬁ-—§(0£> + Ag + AE etc. ) -

uther univalent solutions of (8 ), may be found which have
singularities ab point. L—‘a.

."

_.Remark 2 In the case where the Qdenslty pressure relation

i of the form A+ %s the functions, W*¥ -and 3%4 are
e__B )

“(A=Ag)® + (8-p)"?

F 106 X =A% + (8~ §)%) ana

_ . z11/e
respegtively, where lk = %-log. El“?fgﬁjaog %1/2_1}; It 1is
1 + v/ap + 1.

(129)

noted that in this particular case new singularities are ob—

tained by differentiating W¥ - with respect to: ‘X, - For in—
stance,

W(Ol) - aw* = . x - )\.o. B ?
cae M T TR A" N )2-+(B-—5)2

e (1s0)

is a singularity which is infinita of zhe first order and is

BWE e
Y

independent of

or 2
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14.. The Passage bé ithe Physical Plane
In the following = procedure will be ‘described for de—
, termining the-flow 4in the- phvsical plane corréspon 1ng to‘a
- stream function, ¥ (v,8), giwen in' the hodograph plane,

) Gonsidering SE gi é% %%J*as-ﬁﬁ%pown,.%fpis fouﬁa
from ° _ e TS T Ve ST
.a_& .b_f + _a.\;b_ QX = aw = X, .a_?.. é?.c. + ?.?i 91 = 1]
dx oV dy oV BW ,1,ax oo Qy;b@i i
@g,my=@=; A dx L WAy
dx ;Y dy oV .f..”ax B¢ dy 3P
that at' every point 2t which ‘the Jacébian - Lo ,fJL¢J
. 1252 B -1 L 30 dw (vlz +43§2}p'=.ffﬁ1ﬁf
D a(x’ Y) bx_ By ay dx | Po | RO::P-,._(':LZ\Z)

(see (24)) does not vanish and is finite, the relations -

D ax = -a-.y D .b_.Z = o _ai -
. 39 By' 3¢ oy | 7.
’ . ¥ L T (138)
D a = .a_c.b. D .él = ..B-.d_>. -
6W - A X

hold. Using (24) yields fiom (133) and (132) ¢

L

: : = Qﬁ 2 =-cos 8 Eg gin 8.
d.x ¢-d-¢ + —arm aw - AP — SR ‘d\'r’ (158)
ay = _sin’® Po cos 8
=g %“’*ﬁ;d“" SIS I
"'f.sazz;,-c__e by (303 T " Ca T
. (1-142) ' T
i® ="bydv + Pgdas = = eo.v r X p r}f a8-" (135)
pv .
there.is obtained ~ = o T
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dx = %{[- (1= M)cosb, _ -————“;‘ : Wv:ldv + [cos o, — E12 e\be]ae}

ve L. 9
o (1~M3)gin e cus 8 cos © (136)
d.y‘--'—pg-{ - - '\119+ = ‘\‘Vv' dv + |sin i+ ——-;—--\[Jg ase
ori - b . .. . L
—M3 ' ' ,
dz = dx+1a;_;%ei°{;[-‘_ = q_—’v‘l]av +[¢v+ iﬁ%i]aa}

. e o
Po o (v Y (st a0} B2 #2982 e o
' PV < (log v)...*: Ve / d(log v) —1 46 )+ 5 TyE o Vgav (137)

Along a streamline, VY= constanti that is, V,dv+V¥gd8=0,
Substituting a8 = — VY,dv/Uy into (137) gives for the

streamlines in the bhysical plane the parametric representa—
tion: '

av

[ pgeos 8 [(1-¥7) ¥y 4+ voya] )
i _-—JP pv= | Ve

pv 2 Ve pv2

dv r (138)

«
I

_f_POSin_S__ [(1 — ME)\VBE.,.VB wva]
/o pvE Vo

0

ind 2 2 2 sin 8 M3
_Jf P, sind [Vg2 4 2 V2] dv-+jp Pof 8 4o J
pve. | Vg : pv 2

where the integration i1s carried out along a streamline,
VY(v, 8) = constant. The integrals (138) represent a general—
ization of formulas (13). Substituting for V¥ the expres—
sions (69), (85), gives a parametric rapresentation for the
"streamlines 1n terms of an arbitrary analytic function of
one variadble,

Suppose that the stream function V(v, 8) of a com—
pressible fluid flow is given, where V(v, 8) is defined

bt A s weas

*It is assumed here and in the following tha*t Wg and
Vy are univalent functions in the domain considered.
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in the simply connected domain E (with boundary curve h)
in the hodograph plane, and has a singularity at the point
a (the image of z = @), (See, for instance, fig. 2b.)

Just as in -the -case of an incompresisible fluid the con—
ditions must be determined in order that the obstacle in the
physical plane (which is formed by the image of the boundary
curve h of! H) be a closed curve, Clearly,*the ‘necessary
and sufficient condition in order that the image of HE 1in
the.physioal plane be single—vrlued is that

19

[pe {[_.]:_:_M.z_\p +1‘£‘.’.}dv-+[{p +_\lie_]de}=0(139)
J1 o] v v

where ! is any simple closed curve lying efatirely in H + h,

Since the integrand of (139) is = complete differential,
the walue- of the integral does not change if "1 ° ig '‘comtinu—
-ously deformed without leaving H + h. and without passing .
through the singular point =a.

Thus, in particular! if the boundary curve h is chosen

‘ » " .. a r
for Z it follows that iy = ¢ dv + %% de = O, that is,
v .
de <¢—> a8 along h, since h 1is a streamline., If

ihmmﬁmn_iunm& ed. inte (139), the condition is ob—
tained thet the image of h in the phvsical plane _be &
closed curve in a form analogous s to (15) and (16)

On the other hand, the relation (139) can also be wr itten

in a diffierent form which is often more suitable for appli—
catlons. .

. e 4
. -

In section 13 some standard types of single—valued
51ngularities were introduced that is, for c¢very point a
= a.+ i functions were defined which are single—-valued
in the whole subsonic region and which satisfy equation (48)
there, except at point a where they become infinite, Such
functions .are

- we

--~W(°)(v 8; o, e) = w*(x 95 xo,eo) B A (140)

1Ib is assumed here that the pqipt..vf=_0.'is not an in-

'2Jtérior point of "domain H, If v =0, '8 = 0. is =n, interior

point it is well to proceed similarlv but use as variables v1
and v, instead of v and 6,
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and

32w ) (a0 Aq, 80)
3e®

""(n?(V.G;m,B)-= (141)

where W* is given by (118), B = €y and

Ao

— - 2y1/ 2 _ 2y1/2 17"
Lol 1= (1 = Me?) (1 + h(1 — M,2) ) ] (142)
2 L1+ (1 — M°3)1/2 1 — w1 ~ MOE)I/c

&

My = ' -
c {aoa — _12.__(1{ - l)G‘?:}l/z

Notation: With every singularity W(n), n=0,1,2, ...
may be associated\ﬁ (complex) number X, + 1Y, which will be
denoted by R(F(n

R(w(B)) = x, + 1y (143)

: (n) (n)
c

where ¢ is an arbitrary simple clocsed curve around a, the

senselof integration being such that a always lies to the
left.

Let it be massumed now that the stream function ¥ can
be represented in the neighborhood of a (the inage of z =)
in the form

&

Y= Z Anw(n) + V¥ (144)

n=1

where A, are constants;qn@;:?. is a function which is
regular at point =a. Since curve ¢ ma¥ e chosen for i,
and since the integral (137) in which W\R is replaced by

'Since the integrand of .(143) is a complete differential,
the value of the integral is independent of the choice of the
path of ¢ i1integration.
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vanishes,1t is concluded that an alternate form of the
condition that the image of h in the physical vlane, for a
flow the stream function of which 1s given by (144), be @
cloged curve ETY that

DTS

n=1 v

- -

It will be of interest to discuss in more detail the

svaluation of the gquant itieS' R:QW‘(_n)) in the special case,
when k = - 1. _ - 7 o

As was indicated in section 13 in this case

w<o)

=§-10'g[(>2—>.o)2+(a‘-p)2 3, wla) o 88 (148)
(A=) + (8-8)2

where a + i = a.

"L+ (v/eg)®] a4y } N [ + (ofag 21721
A = a4 o
2‘.108 )[l'*' (v/a )27 1/2+1 Ao 210g [l +(m/a )2]1/2_'_1}

In aﬂdition to these sihgularities are obtained (in this

particular case) by diiferentiating with respect to A, the
singularities TR LA

[N Ve e .- -- ..—...-..a-.-‘ *

N

’(01) BW(O) _ A — A
“ oM -::..('?\—Xo)h(eo.._s)z' » ete. | '(147)

e

Substituting

W (o) - RN TE W U A
C(x = Ao )2.+(e B) JV‘[l + (v/ao)ajl/c

(0)... . 8 ~B .
[(K k<>)2"'(9—'5)2]
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2(N — Ao )(e-—s) L N

LA =2p)2 +(e=B)2°v [1 + (v/ag )2]1/91"

(A—2p)° — (08— p)% (148
[(A=2g)2+(0~p)21" *8)

~{A—=2ro)? + (a=-pB)=:

54
or
(1)_
5 w (1)<
or
W (01)_

Wy (01)

[(7\—?\0)8+(9—p)2]2v[1 + (v/ao) ]1/2

-z(x-xo)(e—ﬁ)
N = Ag)® w (8 —p)2]R

into (143) gives the corresponding values R(ﬁ(ki) = Xp + 1Y},

k= 0,1, and R

For instance,

({(01)) = Xo, + 1Y¥,,, respectively.

X = _ ; 1 —cos Q(QHB) ' _ sin 8( —Ko) d‘
° f [EEIWENON Lv?»(1+<v/ac,> 2y ve Jer
“if'+ [éos'dgh—hb)'+ (1 + (v/ao)z)l:a(e-s)'siné 1id&}'
jp ,{ —sine(e—-p) ., cos G(A—Ko)] av
[(A—x )*+<e 5)23 Ly3(1+(v/ay)3)Y 2 v2

_ (1 + (v/ag)a)lla(e—-fa‘)cose ] d.e}

;_[sin 8(A~a)
v

3
oy

'\

v

15 knpendix
(136) are complete

I. Verlflcation that the expreﬂs1ons
given byl (136a) is a

differentials..-~ To show that dx as

13&"(1363)Tﬁ{1i3%e denoted in this section the first

expression of (138),

and by (136b) the second expression,
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complete differential, it 4s necessary to prove that. the
csaefficients a and D :

-
— M2)', "sin 8 .
oo gy [ et Wy e ey ]
o . > (149)
_ cos €& sin ©
= p'[ o v T e we]

of 4v and 46 ‘of the right—hand side of (136a) satisfy
“the relation Tt ,

‘Ba db

36 - 3% (150)
Recalling (BGETYié;&E
3% _ Po¥ MV 30 _ _ po(1 —¥%) W (151)
.69.; P ov’ Bv" pv o6 _

so.thgf - _ . . u_“, ) '.. B - .
E - cos 6 " gin 8 : a
. a = P.o.( P -¢.v - T \h‘) - . ( 3
L : 8 S 152
b = p, '(00_:_ Q“.¢.e _ sin -6 we) _ )

Theqefore

& _ 'sin @ 4 . cosd’ i cos © sin 6
50 Po <- -~ ¢v-+ = ¢Ve - —p———' W‘V - —'—p'?r—-' \{Jve (153)
v
db ; . cos & ., cos 0 4 .oosin & Py -
3 F’o(‘ 75— %o+ T %oy ¥ ——— T Ve
+sin § , - ain® -
 Thus ft'is‘qeﬁeséary to prove that .:-_:" -
_sin 8., jl_.coéfez ,_“ _ - cos 84 L, sin 8 pv . . e
e e T
S sty e
T TR . PV o
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sy . .

If use is made of (30) ééaih,'it is'ﬁééé%s%fﬁ'bnly to show
that FUEREETLOE > 8,
i . 2
! Lo 1 - M 1
-t ' S (156)
pv p3v. pv
* \.3 . a ! - Y TN~ A
= -V = (log p) (157)
s v Lo,
- u.'ﬁ'
.But from (25) it is known that
A B P, % -
k-1 - : . .
0o = o [1 - k-1 2] (158)
' oL 2aq® J
so that
v & (log p) = - v=2

2 1 2
8s" - % (k ~.1)v

If this 1is compared with (31) it is seen that this 1is exactly
equal to —M® " and it therefore has been verified that the
right—hand side -of (136a), is a complete differential. In a
similar fashion it might be shown that the right—hand side

of (136b) is also a complete differential. Hence, since this
is the case, it follows that the irtegrals (138) are inde-—
pendent of the path of integration.

II. A_proof of apn suxiliary Jemma.— In-the following
it will bve proved that F(2\) (see sec. 9) can be approxi—

a<m) eisk' agm)= o

mated by polynomials Fp(2n) = .

[~ e

(e}

S

in every interval (=, Xo),~ Ag <0, and indicated how to
determine the Fp(2A).

If 2M is replaced by log X, the F[2a(X)] is a
continuous function of X in the interval (0, Xo), ZXo<1,

and by classical results, it is obvious that it can be ap—
proximated by a polynomial in ‘X, It willl be seen that it
will not.suffice merely to approximate F, but in addition
to this it will be possible to regquire that any given number
of the derivatives of F be approximated in the interval
(- ,Xy,) by the corresponding derivatives of TFp.
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It is, however, of intaregt to give » more explicit
form of %thle. a@proxim@ting‘polynomials. Thi€ xil& make 1t
possible to-determinsg tHe*corrections of obtained
in section 12 which have to be made in order "to obtain func—
tions Q(n corresponding to a given Fn.

. o VL T S I I : "'"""'[‘

If M increases steadily from C to 1, A increases
from =—o to 0. Since the relation ¥ —= A 1s & ons—to—one
correspondence, there corrgesponds to every A,, Ao < 0, an

Mo = M(A,) < 1. Therefore, if Are(—w, r.), then M(A)e(0, M,).
For M = My, the function

(k + 1) M* [~(3%k — 1) M* — 4(3 — 2k) M® + 18]

P = 3
64(1 — u*)

nay be approximated dy a polynomial F, of the (2n + 8)
degree in Ha, :

Fo(M) = S.I*C_éi.;l_.). e [-(31;— 1) M¥ - 4(:3 — 2k) ¥°

| + 16} [ V (v %) (— 1) M”:{ (isg)
’ U—l

Only a finite nunber of powers-of M° appears. in (149).. It
will now be shown that ;ME can be developed in the unifornly
convergent series. Do o :

K 1 /2 /2N u_
y.\st X=,2<(k+1)13 (k1) /)‘/ e®™, A<0 . (160)
) k+l) -l:-(k— )l- < . Lo -
~Instead of considering: M3, it is well to introduce
s = J.--(:L-—Mz)”B (161)

Since M2 = 1 - (1 — s)z, it will suffice to determine the
serles for s,

From (48) follows
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- ‘—1 J—/h '_f =
g = S 2(l+h ..—S)fh 1) } i < +]1;:> :./z,k>1 (162)
28 Lpmisg 1+s) Nisw IR

.2

For sinpliclty's sake £t will be assumed in the follow1ng
that ) ) N

e 5o [T T
nis b

e 2

.r ) . PO Lt

h_—<. %‘. thet is, k S.5/3 (153)

' Now consider the function X = X(s) .as a function of the
conplex variable s, and investigats its behavior in the

domain (s <1,

Y, Ly 1, 2Hmi
8 <l+ h ~s> h R

Z—s h—l—'l'*'s

Remark: X(s)

is a many-

valued function because any integer may be taken for H.
Since, however, its branch points s=1+h* and s=h"'—1 are
outside J[e] <1 it is necessary only to consider ome of 1is
branches: Therefore, H =. ‘1 chosen, so that whenever
X(s) is mentioned this branch will be always understood.

In order to pr.ove ‘that Qhe‘Image of [sl<1 1is a schlicht
domain in the X~plane it is noted at first that X(s), S
real, is a real function, and therefcre the image will be a
domain which 1s symmetric with respect to the real axls., The
image of,. 8 = +1 will Be the point 1, and the image of s
= =1 will be a point of the negative real axis.

It will be shown that, if-‘@Jf_arg g, varies from O
L, tom, X increases steadil?“ Sﬁkﬁﬁng s = eid yields

1 W /2h ¥ = (1+h=2)% + 1—-2(3+h Yoos g

— - M - = (164)
(5—4 coi @272 (h3=1)%+1+2(h~2=1)cos O

1X | =
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a.n._d

d.[X..l - __l__( 4 sin ¢ > ﬁl/ah
d 2 (5—4 cos ¢)3/s. :

- 1 1 - 1/2h—-1]
N M
- [2h<(5—4 cos ¢)172> .

((l—h ) +1+2(h —1)cos¢)(1+h Yaind+2(h” -1)zsind>((1+h Y241~ 2(1+h )coscb)

Amge

((1 AR+ +2(n 1)cos¢> IR J
_( 3 e1nd )Ml/zh—i I S '
= - P (165
((5—4. cos ¢)1/a (1—h_'1)2+1+2(h‘ l—l)cog ¢ )

1=‘=1'[" (1+n~)2+1-3(1+h” M cos & ,
JL 5 —~ 4 cos @ : _ Tro
-4

. n ]
(h—*~1)2+1+2(H *1)cos ¢

'(h_e"'l)_- (r®+2)cos ¢ + cos® @

-2
= 4(h -—1) _ _ :
( (5—4 cos @) ((h"l-l)?ﬂ-uz(h"‘—l_)c‘;os Q :

For.all values- O = @ £'n the exprgssion (165) has the same
sign as 2. The denominator of P is always positive, and
the numerator is positive for —-1< cosd<«<l, Clearly for all
values of ¢, O<¢<mw P, eand ‘therefore (1o5) is positive.

Thus- the boundary curve of the image of [s]l<1 4s a.
curve which does not intersect itself. By classical theorems
of thextheory 'of functions the domain bPounded by this curve

?‘.s schlicht, Clearly it includes in its interior the domain
Xt<1.

Since the image of |s] < 1. is schlicht and includes
| Xl<1l, the-.inverse function s = a(X) 1is regular i@

[X1<1 and by Cauchy's theorem can be expanded in [X} <1
in the form of .an infinite series, (X)) = S_‘ B.'L;[v'
-

e L P=E1

‘For' every X4 <1 and every €>0- there exists an ¥
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N, . ‘ ji
62" | s < Th xV
such that IS(X) — BpX l € for [X]I<ZX,. us /. By
: ' vE1

v=1 _ Lo

yielde:the required approximation.

REemark: Clearly ¥ can be determined so large that any
) N
' - v
given number of ‘dérivatives of ;T BpX dpproximates the
: o . s

corresponding derivatives of s(X).

It is noted further that a formal computation yields;
for the right—hand side of (152) for X} <1 _ 3

X = s - L(gk'+ 1)s2+ 7];-(4k3+ 2k—1)s3

——-(241< B3 i4k—¥1)s“ + %8-_( 481k +4x®~44k%+2k+5)s"

.- ) 4 3 ALt o _ )
- 480( 480k°—104ak*—572K>+ 148k3+128k—25)s + zaeo( 28801: .

~15684k° 8944k +2212K°+1140Kk?~ 602k —5)s” + . . . " {1§5)
The inverse function is e '

e SURE RPN 3.1 ,p,3 .
s =X+ 3 (2k + 1)K% 4 £(4k® + 6k + 3)X +37(BeK
4 .
. +68k® +76k + 29)X %+ Z]'é' @8k~ +212k° + 392k” + 328k
e . .- . . . . N
‘+ 103)%°5 + Zé—o(zsao_}:fs..+' 2976k + 796§3k3

_ + 10788k" + 7266k + 1935)x° + 2880 —2 (2880k"

e B

4 23472k 4 84BB2k® + 1B21%2K® 4 17BoEOK?
+ 98086k + 286%75)X° + , . . . (1e7)

By the present result this series converges - in. [X]<1, and
therefore for 0 § X <1,
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n e III. ADDITIONAL REMARKS BRI

s . HRLID

1&.“The Boundary Value Problem in the Physical Plane.

‘ Mixed Flow
-1 . . o7

The theory developed in the seﬁond part of the paper
leads to various methods for constructing flows around air-
fqils.

'T‘ hea 'nn" mary “raohlam +a ha rv aAf atrfFadla
T e J-VU-‘-WJ“ o o - Vo QALd: VL LD

-l e i3 Syl Yy
is to determine the flow with a certain velocity at infinity
around an obstacle given in the physical plane. Thisg leads to
a very complicated nonlinear problem in the hodograph plane
since the domain where the flow is defined is determined by
the flow itself. Eowever, this problem may be considerably
simplified if it is agreed to obtain a flow around an obstagle
which approximates the given obstacle.

A dn +he +h
v il

The hodogravhs of flows of an incompressible fluld around
-pré6files of certain types and for a number of angles of attack
may be determined once and for all.

The wresent approach also makes 1t possible to construct
functions satisfying (32) and having singularities of the
kind required - that i1s, singularlties of the flow of & com-
pressible fluid whiéh yield sources, vortices, and doublets.

A hodbgraph is chosen which in the case of an lncompress-
ible fluld leads to the desired profile. -

Let Y(v,8) be some solution of (32) which possesses
the required singularity at point a (the image of 3z = =),
A gsolution of VY(v,8) of (32) is further determined, which
is regular in the domain E and such that

Tt @(vye) + \U(.'V.E)
assumes a constant value on the boundary h of H.

. The obtained function 1s~a hodograph of a flow of a com-
pressible fluid the imaize of which in the physical plane will
in many instances not differ'considerably from the'given pro-
file. Thig ‘method of attack ‘can be refined: By the forego-
ing procedurs the initial profile is distorted in a certaln
way; 1f the given profile 1s distorted in opposite. direetions
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. - -

and 1f the procedure described is repeated to the distorted
profile, then in many instances 2 hetter approximation is ob-
tained. This method mav be repeated ‘un'til the desired degree
of accuracy is attalned. T .

However, thls procedure khas the inconvenience that in
order to determine V¥ it is necessary (at each step) to
solve a boundary value vproblem for the equation (32) which
reguires rather long computatior. :In ancther paper the
author has developéd in 'deveil -an. alternative to, thie method,
in which he avolds the necessity of solving boundarv valuef‘*

problens.

In the present coneiderationa attention was in the main
dlrected toward the subsonic case, In addition to the methpd
of attack,which is based on considerations of section 8 of *°
the second part, thereiexists znother possibllity for handling
the mixed problem - that 1s, to construct flows which are” par-

tially subsonic and partially supersonic.

17. The Represenfation of the Stream Punction of a
Subsonic Flow in the Region in Wﬁibh_ﬁﬁh Velocity
is Near them?elocity of Sound
Pertiallf-éupereonic Fid%

In the region (y £ M < 1) whers Mo is near 1, the
series (85) convergés very eldwly, and it is- therefore neces-
sary to employ a large number of ‘terms in -.order to obtain a.
good approximation for Y*, If this be the casek it is then
expedient to replace the expansion (85) by (103)~°

This 1s, however, not the only:way of'overcoming this
difficulty, and in the following, other means of’eo doing
will be indicated; this alternate approach employs the method
of "analytic continuation:® . ..

'llt may be obserred that a similar procedure can be ap-
plied to prove that for every profile (satisfying certain
conditions) there existe a flow of a compressible fluid.

H
Thie method will. be &eveloped in more detail 1n a fu-~
ture revort of the author.
-"'lr :-' "..r

:r".‘ . o
: A A
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Let W(v,6) be determineé-in a domain, say H, and let
{wn n=1,2, .. .bea "gomplete" system of garticular g0~

lut Lons of (46), emch VYp Dbeing determined . in a domain G,
Suppose that H and .G actually do overlap and denote their

common part by I, Further, let sﬁ anVy be the series ex-

m
pansion of Y in I. Frequently Ej 'q'Will converge
=1 -
outside . of I, .say in the domain Hp - ¥, where H; 1ls G
or sonme -part ofit’ . If, in addition, Z can be’ t.e]’:':in—
wise differentiated twice in Hy, it esents the analytic

continuation of ¥ in Hy - I.

==

Remark: The'requiremént that S? aﬁwnllcdindide with ¢ in
SN £ .
n=1l .
a'domain I, can be replaced by another requirement, which

will be explalined latgrf

Frequently, 4hse domain, Hj '&g'wh;ch.thg gstream function
can be represented in the form an¥y, covers a supersbﬁic
£ n= J;
reglion as well, and. consequently this method will then yleld

the flow in this latter regiion, In ‘this manner; a metbod
(based on considerations other than those of sec. 8) for de-
termining & mixed flow may be obtained.

Two alternate forms of this method will be ‘dtécussed in
the following. .

+

First Method

In order to develop the first approach, an suxiliary
lemma must first be proved.

Lemma: Let p(v,6), [Vo <v<v,, =1L
v

an analytic function of two-real - variables
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@
Z ay(v) eos T28axep,(v) s1n 72O
U=° N A - ih B . ] '
8 (v) = 1 L-l/’-p<v.e> 20, “&,(v) = %/ p(v,8). oos. T2 as,
w ! . e :-IJ . . Lo L - "..;L
b (v)\—l (v,8) sin 28 4p (168)
p{¥v) =% p(v,8) sin 22
L
be its Fourler development. The gerfgg‘(lsg) converges uni-
formly and can be differentliated termwise any finite number
of times both with respect to v ‘'2nd with resvect to 8.
Proof: TLet
. k : k
o g ) d (v) T a~v,, (v) o
-3—52.(_‘:.'_@_)_ ~ Z‘ [.._fl,____ cos 6 + U. sin _____]’ (k.= 1'2)
. aYk avk L dv :
. 3%
XNow, since p 1s an analytic function of v and 8, S——S—
o N . . ] - v 8
is also an analytic function, and therefore
L 2
3%p . -
———) a6 < A : (169)
u/é <av o8 . oo .

-L
is bounded, uniformly, in v:

On the other hand,.
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M - M M
Yoo of 2
Y day,(v) . dby(v) < 2 o2 da,,
ya av dv — ug dv
v=n P=m U=
4 g M
d - va
v Y
' o I e R

from which the uniform convergence of the series

A3

o . ..
- dv L av L

. foilows, - But (171) is the series which.is obtained ‘by ;d,iffe'r_
entiating (168) term by term. -In a similar way the other ; .
cages may be handled. : ' T

- Since every:.solution of an elliptic eﬂggpign,witthqg-af
lytic coefficiente-is an analytic fdnetion, of-two Fezl-vapi- . ~
ables, the result obtained cad be avplied to the case where -
f'p(v,e) is the stream function W(v,e) of a subsonic flow.
Thue '

B o . R S TR }b;=
vl T8 T
2; [av(v) co? = + bU(V) sin —%—]’ ‘
R A LLE A s ' ST O
L P :
1
aglv) = — v(v,08) 4o,
2L, -
' =L T Lon R ,,-}_gg'?z)
I P v : T
(v) =~l¢/n w(v,8) cos TRE gp
.a'v L Rl L ] .
J1, . ) v
L S '_-J'.
1 ™6 _
by, (v) Lf w(y,e) sin —= d6, (v =1,2, . . .)J
: v :

can be differentiated termﬁigé. If now, following Chaplygin
the author introduces instead of v the variable
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w2

T = e—— ™7™~ =

z
2a,

then the equation for,, V¥ éésumes tke form

2 f _ovBay 1~ (28 + 1) _oyB 2%y
= LzT(l T) a-r}+ ) (1 T) i 0 (173)

where B = ——> _  (reference 1, p. 5, formula (12)).

(k - 1)

Differentiating termwise gives

m L . . . . - )
LUASE dabY 1~ (28 + 1) T g _ o =B vinlay) . v
Ej{ (T(l ™) ¢?> - (1' Tl —pER (e0s =

T(1 - T)
v=o,
- -2 '
JL\j(l -7 5 ) - (28 LA DA E TS g bu} stn 278 .
..T(l - T) . 4L2 . L
» (174)
and, therefore, the a, and b, . are each solutions of equa-
tion . L . ]
a -B da, (28 + 1)7 ~F v® 52 o)
— T() -~ 7T - T
art { ( ) ar T(l -T) (1 )
\ (175)

4 (r(l _)P dbu) _r - (28 + )T (4 ; )P ﬂi;agz = 0
ar ar /- T(1 - 7) . 4n® y

(175) is a hypergeometric serles and thus every solution of
{175) may ®e written in the form

- =
: - §a, T + BLE,*)T iy . (17e)

0

-
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wheretj&f-_andAEBv.fére constantd and

-

- S : - L3 (177)
E+1 .
Fx = (1 ) | ?(YU'- aps Yy = Bys z.+ Bi 1 -71)

[ . L4
. .o

F(@,B.Y.T) being the hypergeometric series Here

[wJE}
l.

v. l'%‘ {(JI’; - B) +‘A1;J. -sv =3 [(JLZ - .B>- - Au] > (178)
we[Gy @ eneet

In order to determine the constants 4y, By, the following
theorem is employed -

f
1

(1) | (2) 5 0 gi ;o

Let Y... (v, 6) and V. (v,e){[éb <. v< v, +L<6<L]
e solutions gi_gg equation of elliptic type. "If; along a
line, say (v = vo) c‘: - A

w(l).(voie).é.w(a) (voie)”... : (179)
and '
(1) . b (3) N e T e s -
oy (v,6) . oV (Vae) T T (180)
ov ov

v=Vo V=Vo

-
R .

then in the whole domain [v, < v< vy, - L <68 < L]

Co ) eey a v ey L (e
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foorve o : : B !
Remark: Suppose that the function . g(f), ( = A - i@,
A = Av) (see (85)) is regular in some domain K, + Hg,

H, = [Vo < V< vy, - L < 8 < LJ

Hy, = [vl <v<vy,, =1 5.9 S.L]

—

which domain lies in [68 < 3%2, A< 0]. Then by the main
theorem it follows that W = Im.P(g) 1is also regular in
Hy, + H;. Suppose that ¥ has been evaluated in the domain

Hy, but it 1s desired to avoid the evaluation of Y by
means of (85).sinpe_this series converges. very slowly in Hy.

'}
H Hy {
1 : -—>V/ao
Vo vl va / v3 ——")\
L
In order thét g
m.
Y M men M e G
v=1 ’

vL

—-

(k) C k) (k). 2
Sy (1) = I:Av Fy + B, FU*] T ,(k =1,2) (183)

- s oA mve ]
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-Beét?e so%ugion: ' under consideration, the constants
k k :

A, » By, must be determined so that
) 2
(1) - _
F V=Yg
. | > (184)
(3) ) .
s, 2 (1) = by, (vy)
V=V°
-
:;_ s . . BT SR I ."‘ ¢ i
o (l) . . . ) . M -
ds,, ()Y 't . _ da_(v) :
dv v=v, . dv _+=Vo
. . _ ' (185)
(3) . . .
de 7 f(T) ) av  {v) _
dv v=Vy .. di V=V, jh
It is noticed that . R S .- : o <
.o foL - ST Bl '
(1) p sl
EEM___ = Au(k) EEM + Bu(k) E_n_ T
aT art . . aT -

v

N ]

2L :y
+_§ET [Aﬁ(k) F, + Bv(k) FD*] (186)

Coap T wlBL T e e e .
af e = 2L Fla, +1, By + 1; -B + 1; 1 - T)
a1 -1y - . 0T TRT

aF *
a(1 - T) .

(1 + 9701 - TpﬁiF(yvﬂ" Ays Yy = Bys 2+ Biil - T)

- : L, . 1. R B
(1 = T)B'_"l .('YU - O:'IJ)(‘YD - BD) F—("-?v '...‘(1,- - 1_'__‘,,:_,

2 + B

+

v

Y, = B, +1; 3 +B;1-T)
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f('
RN e Wy

Since in [yl <v<v, =L L 6 < L], Wv,8) is an analytic

funetion, he series

vL

m ——
(1) (1) 2 . TIv6
y {[Av FU + Bu . Fv*] cos ——L—-
v=1 : : VI
' N (2) — -— (a’ - TT - qnpe\ 2 oo\
+ L.A.U FU + Bv‘ ’ B i 2 gln XX (187)
L

and its derivatives converge uniformly and absclutely 1in this
domain. Then (187) represents the solution Y under consid-
eration in the region H;, Moreover, this series (and its
derivatives) may also converge outside of H,, say in

H, = [v, < v < v,, -L£0 <L), If H; partially lies out-
side of the domain [62 < 3A%, N < 0] (see sec. 11) then the

obtained expression gives the analytic continuation of the
solution outside of the domain of representation by the inte-
gral formulas (85). In particular, H, may include some
region which lies in M > 1,

Very often it is known that the region, say L, where

the velocity is suvpersonic is small. ¥Now, instead of summing
to infinity, take

N - '
y [sv(‘) (7) cos Jll;—@ + 5,30 (1) stn —‘llLT—Q] (188)

U:

-

(see (183) and (1L77)) where N is sufficiently large; then
(188) can be considered a sufficiently good approximation for
analytic continuation of the stream function Y. under con-
sideration, On th'e other ‘rhand, (188Y represents ¥ in the
whole plane and therefore is particular in L.

. In this way ars obtained approximate flow patterns .which
are partially supersomic. * In applying this method, it is
necessary, however, to check whether the streamlines in I
approach to smooth limit_liqgg when m_  increases.

<3
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+Second. Method- . -&.:

wt L
Pk

l In reference:2 the ayther .has introducdd-different .

. “"methods for computing sets of narticuxar aolutionq,l.wn(v.e)

68 (32). (Ses p. 17 and ?. 2% of reference 2;); The func-
tions of each of these sets are defined for the subsonic and
the supersonic range.

Let H TDe,a domain in which 1t is desired to determine
a hodogranh with a supersonic velocity. Then H 1s divided
into two Qverlapping,parts B, and Hg., .In. BE; the veloc-

ity is throughout subsonic. The interssction of H; and

Ep 1is demoted by ' I.  In figure 5, HE; 'is that part of H
for which . v€v,, and H, 4is that part for which v Yor
Vo< vy < 1. There is determined a function y,(8,v) which
is defined in - E, and -has at point a, = presc&ibed gsingu-~
larity, and on the part of h which lies in v <'vy, h;,
gpp:pxima@elkf@ongﬁgnt'values. '

- 1" Now' consider the functions

ﬂ,:“’. bolmie) + Y ¥y (7,0)
v SRIR =
m
xu("‘) Z BV, (v,8) .

._ . v "

‘and determine the @y, and B, in such a way that

n . - .
[ z%%aaﬂflzwids .
. S V=1 ' ? hy V= o

2 - LN A
DSl g e vl

v=1 £

will be a minimum

L ‘It is observed that it 18 possible also to use the
Chaplygin solutions. See, for instance, reference 2, pp. 18-

22.
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If the boundary value problefi"has a solution (possessing

certain properties on the boundary h) and 1f the avsteﬁ..;wv

' 1g complete. ‘then it 18 possible to show (under certaln eddl-
tional conditions) that the limit function obtained by this
‘process will yield the solution, IR ;

'ffﬁ 18 A Remark Concerning tﬁe Apnlication=of the S

Hodograph Method in the Three-Dimensional Gase.:

The method. developed in this paper yields a general
formula for the stream functiong of possible COmpressibIe
fluid flow patterns . :

. ¢ As 1ndicated fn refersnce 2 (meecs. B to 8) there exisﬁ
other methods of 6btaining particular sclutlons of equation
(32); and for deriving from them solutions of (117). 'They:
often are not very convenient for practical purposes, and in
many instances represent a flow only in a part:of 1ts domain
of definition.

In the following will be.indicated a method of obtaining
particular solutidns of equation (32) which has the disadvan-
tages indicated but which can also be applied in the three-
dimensional case. _

As 18 well known, the velocity § = (u,v) of an irrota~
tional fluid flow satisfles the equations

S
TN

vip §) = 0, v x 3 =0, (Cauchy-Riemann equation) (189)

This suggests considering three-dimensional flows where the
velocity & = (-u,-v,-w) satisfies the equation

Vip §) =0,- Vx§ =0 (190)
: 1
p = p(V) %being function of V =.(?2 + v? + ﬁs)g alone.

It follows from the segcond equation of (196) that there
exists a potential ¢, such that R .

o . ?la'=_ﬁﬁ$;' B 'T?'-" . kigl)
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-

Iﬁserﬁihg this value in the firast equation of (190) yields

o(p 3¢/3x) _ 3(p 30/3y) . 3(p 3¢/3z) _ , (192)
©o¥x Tody -1 o

(192) 1s a very complicated nonlinear partial differential
equation, ‘e v . AT

The i{introduction of u, v, w as new variables leads to
a nmuch simpler nonlinear differential equation. R

Introduce as new variables SR
K - "
u = ?E.. v = a_¢.’ w = @ . ‘ (193)
ox . ay Sz [ SO

and as‘the new unknown function
A= xu +°yv + zw - P ' m{- ' (194)

Use (193) to obtain from (192)

3(pu) 3(pv) a(pw) o J du 3v aw
+ + Lp u ok p = ok op B o=+ pou

3x - 3y u 3x dx w  3x
+ p,7 %% + [pvv + p] é% + P,V §$-+ Py ¥ %% + P v %%
e [pww + p} gz = 0 (195)

It follows from (194) théi

- 3x ay [, 22 _ 30 3x 3% 3y _ 3P 3z _
Ay =.x +u 2 T Vet 3u - 3x du ~ 3dy ou dz ou
B R o o (196)
>\v=y! }_\w=z Lt .

and
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3x _ ox ox oy 3y _
30.T M 3o P Paws 3n ot Dewes 30 Pave 5 T A
Hi a8 (197)
oy 0% oz 33
— = Avw’ ——— 3 Auw. — = A.v.w' "y = Aww’
aw ou v w
From. . ; y . L
ou = du A * ou A + Su Au = 1
du gx uu oy '“V ... 0% w
ou ou Ju 3u
= === A + == A + == A = 0 (198)
cu _ oSu ou. o - 9u _
3w oz tuw t a7 Mvw Y g7 Mew = 0 J
there 1s obtained
su | v Dww

so forth o (199)

. A CO .
where D denotes the detdrminant

. _“KMu Auv Auw
D =‘xuv >‘vv Avw
}\U.W AVW 7\WW’

Substituting the values obtained in (199) info (195} yields
‘he following egquation for A:
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j
r A A1_1'1_r Av"r IALV ;).\#v':'r-l l}\uv >\1'rv,
,_puu + pJ - pyu + P
T R Pay Pyl Maw, Ave
; T Puv Muw | “ofMue Paw ' Auu Auv
= Puv + [p v+ p} -~ Py¥ C e
Aew  Muw M Pww Auv v
Auv  Muw Ay Mgy b oL Miu Auv :
+ PV I - _ + (py w+p) , =0
= Avv . Ayt 0 [y :xww1 Ikuv S )
Here = p(u® + % 3 wz)% .is.a known funation. .

{:There now ariges the problem of determining particular
solutions of (200). ‘Clearly, this can be dohe byiusing the
series developments c .

S ORI .Sﬁ A - ByByP
' H -3 o mnp [ .
m,n,p

(201)

n,

which satigfy squation (200). [

Such a eeries develonment which represents: (in the hodo-

graph space) the potential funetion ¢ of a possible flow
pattern of a compressible fluid converges only 1n the nelgh-
borhood of - the origin

. SRR __.,_-' . ' : s

However, there exist methods of determining ¢, 'in the
whole region of the real (u,v,w) space where ¢ 1is regular.
Such a- representation, fof 1nétance{‘is given'iq many cases

By o .

mln’P

' "m.n.p
Amnp uvows

T[lL + k{m ¥+ n + p)]

lim .
k —> 0

¢*(I.yl, Z)

}(200
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A : ' OONOLUDING ‘REMARKS - T
. : n i
ar .' 'P'," N ; RN " Oy ' L
. The main result of the present report consists in deriv-
ing g “formula which.transfoérms an arbitrary analvtic function
of'a complex.yariable into a stream function of a compressi-

bl subsonic flow. _ "

[N

This formula yields compressible flows around symmetric

. (and dertain - nonsymmetric) obstacles.

The main difficultv arises ‘in adapting the formula to a
given shape of the obstacle. Avproximate methods for solving

this problem are 1indicated in section 16.

Since all expressions appearing in the theory of a com-
pressihle fluid flow are much more complicated than those
occurring in the study of incompressible flows, a careful
investlgation of the numerical methods %o be applied is~ nec—

essary.

A consgiderable part of the numerical work con? ts in
n

'pféparing tables of auXiliary fﬁnctions such as which
have to be used 1n all partlicular .cases. In this paper the
functions Q(n) are computed uv to n = 4, for k = 1,4.

Tables for the Q n)i 8 for higher values of the.superscript
n will be necessary if flows with maximum Mach number ap-

‘proaching 1 are to be considered

Bach particular problem also 1nvolves the performance
of certain integration processes. In order to advance the.
application of thie theory it would be necessary to use of-
ficient modern cbmputiﬁg devices. : - .

The present paper dgals onlv with subsonic flowe. It -
should be emphaslzed that the development of the theory wiil
permlt conslderation of flows for which the maximal veloclty
exceeds that of sound. (See sec. 17, .

v

Brown University,
Providence, R. I,, May 15, 1944,
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. Table IIa
The values of F, H, Q(l)for k = -0.5
22 ¥ T v/ay | B(2%) F(2» Qm(ZA)
- 0 1 0 1 0 )
-2.82 | 0.265 | 0.964 | 0.272 | 1.000 | 0.0007 | -0.0299
-1,96 | 0.403 | 0.915 | 0.430 | 1.001 | 0.0048 | -0.0602
-1.612| 0.473 | o0.881 | o0.518 | 1.002 | 0.0105 | -0.0909
-1.51 | 0.497 | 0.867 | 0.551 | 1.003 | 0.0138 | -0.1115
-1.388} 0.528 | 0.849 | 0.593 | 1.004 | 0.0187 | -0.1267
-0.79 | 0.690 | 0.723 | o.861 | 1.015 | 0.1135 | -0.3009
-0.394) 0.820 | 0.572 | 1.165 | 1.046 | 0.6430 | -0.7033
-0,188| 0.901 | 0.433 | 1.440 | 1.112 | 3.6330 | -1.5871
-0.132} 0.921 | 0.388 | 1.527 | 1.145 | 6.9763 | -2.2682
Table ITb. The values of F, &, @™, 2®  for x=1.
2> u |ve| ¢ | = NET) T o & g s @ 2
-~e | .0000].0000| .o000|1.0000[ .o000| .oo00 .0000 .0000 .0000 0000 0000
-3.8772| .1000 | .0999] .oo01|1.0000} .oocO| .o0OL ~.0001 .0002 { 9.9600] .cO10| -.0020 .0000
-2.5096 | .2000 | .1992| .o011| 2.0002| -.0009| .0015 ~.0013 .0008 [ 4.9197| .0030{ -.0103 o148
-1.7227 | .3000 }.2972| .0064| 1.0014] -.0056| .o0o085 ~.0083 0064 | 3.2141 .009%0] -.4u1 0670
1.2071 | .4000 {.3938| .0256 | 1.0042| -.0099| .0342 -.0395 0374 | 2.33711] .0235| -.1203 2307
-.8238 | *.5000 | 4879 | .0866|1.0110] -.0574| .1160 ~.1680 2116 | 17947} .0520] -.3152 .7600
-.6706 | .5500 | .5341| .1565]1.0167| -.0935| .z2101 -.3496 .5211 | 1.5901) .0755] -.s082 1.4060
-.5364 | .6000}.5795| .2839{1.0247| -.1501] .3823 -9, 1.3527 | 1.4150| .1088] -.8277 2.6949
—4204 | L6500 | 6242 5245 | 1.0359 | -.2401 7089 | -1.6847 3.7802 | 1.2620{ .1566] <1.3796 5.4353
-.3203 | .7000 |.6680 | 1.0060 [1.0515{ -.3870 | 1.3663| -4.0770 117558 | 1.1254 | .2275] -2.346| 11.8168
~e2207 | .7500 | 7210 | 2.0623 {1.0811| -.6959 | 2.8304| -12.7121 51.4676
--1615 | .8000 {.7532 | 4.6583 |1.1049|-1.0896 | 6.4088 | -35.1357 | 194.4562| .8847] .5248] -9.0769] s1.6373
-.2015 | .8500 | .7945 | 12.5662 | 1.1517 | —2.0186 | 17.4338 | -249.6938 | 954.6&43 | .777| .em3| -21.9464| 306.6745
-.0535 | .9000 | .8349 | 46.6378 | 1.2275 | —4.3787 | 65.3783 | -997.3960 | 16412.652 | .6555(|1.6804] ~71.6427] 1772.3621
.0000 |1.0000 | .9129 o0 oo - o0 oo - o0 - .0000 o0 - o0 oo
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